IDEAS home Printed from https://ideas.repec.org/a/kap/enreec/v4y1994i3p265-277.html
   My bibliography  Save this article

Regional economic impact of oil spills

Author

Listed:
  • Knut Heen
  • Magnar Andersen

Abstract

This article demonstrates an approach of coupling an environmental model to I-O analysis which aims to quantify the regional economic impact of an environmental accident. The model is implemented with the data of a potential oil spill interacting with the salmon aquaculture industry in Northern Norway. The production loss in salmon aquaculture and the regional income impact is computed and discussed. The approach used in this article could be a model for estimating the regional socio-economic impact of environmental factors like water and air pollution. Copyright Kluwer Academic Publishers 1994

Suggested Citation

  • Knut Heen & Magnar Andersen, 1994. "Regional economic impact of oil spills," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 4(3), pages 265-277, June.
  • Handle: RePEc:kap:enreec:v:4:y:1994:i:3:p:265-277
    DOI: 10.1007/BF00692328
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF00692328
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF00692328?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leontief, Wassily, 1970. "Environmental Repercussions and the Economic Structure: An Input-Output Approach," The Review of Economics and Statistics, MIT Press, vol. 52(3), pages 262-271, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taelim Choi & Randall W. Jackson & Nancey Green Leigh & Christa D. Jensen, 2011. "A Baseline Input—Output Model with Environmental Accounts (IOEA) Applied to E-Waste Recycling," International Regional Science Review, , vol. 34(1), pages 3-33, January.
    2. Arik Levinson, 2009. "Technology, International Trade, and Pollution from US Manufacturing," American Economic Review, American Economic Association, vol. 99(5), pages 2177-2192, December.
    3. Daniel Moran & Richard Wood, 2014. "Convergence Between The Eora, Wiod, Exiobase, And Openeu'S Consumption-Based Carbon Accounts," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 245-261, September.
    4. Albert, Osei-Owusu Kwame & Marianne, Thomsen & Jonathan, Lindahl & Nino, Javakhishvili Larsen & Dario, Caro, 2020. "Tracking the carbon emissions of Denmark's five regions from a producer and consumer perspective," Ecological Economics, Elsevier, vol. 177(C).
    5. Li, Yilin & Chen, Bin & Li, Chaohui & Li, Zhi & Chen, Guoqian, 2020. "Energy perspective of Sino-US trade imbalance in global supply chains," Energy Economics, Elsevier, vol. 92(C).
    6. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).
    7. Airebule, Palizha & Cheng, Haitao & Ishikawa, Jota, 2023. "Assessing carbon emissions embodied in international trade based on shared responsibility," Journal of the Japanese and International Economies, Elsevier, vol. 68(C).
    8. Alexandros Gkatsikos & Konstadinos Mattas, 2021. "The Paradox of the Virtual Water Trade Balance in the Mediterranean Region," Sustainability, MDPI, vol. 13(5), pages 1-14, March.
    9. Kumar, Indraneel & Tyner, Wallace E. & Sinha, Kumares C., 2016. "Input–output life cycle environmental assessment of greenhouse gas emissions from utility scale wind energy in the United States," Energy Policy, Elsevier, vol. 89(C), pages 294-301.
    10. Boglioni, Michele & Zambelli, Stefano, 2018. "Specialization patterns and reduction of CO2 emissions. An empirical investigation of environmental preservation and economic efficiency," Energy Economics, Elsevier, vol. 75(C), pages 134-149.
    11. Yang, Ranran & Long, Ruyin & Yue, Ting & Shi, Haihong, 2014. "Calculation of embodied energy in Sino-USA trade: 1997–2011," Energy Policy, Elsevier, vol. 72(C), pages 110-119.
    12. Yoann Verger, 2015. "Sraffa and ecological economics: review of the literature," Working Papers hal-01182894, HAL.
    13. Yannic Rehm & Lucas Chancel, 2022. "Measuring the Carbon Content of Wealth Evidence from France and Germany," PSE Working Papers halshs-03828939, HAL.
    14. Daniel Croner & Ivan Frankovic, 2018. "A Structural Decomposition Analysis of Global and NationalEnergy Intensity Trends," The Energy Journal, , vol. 39(2), pages 103-122, March.
    15. Lach, Łukasz, 2022. "Optimization based structural decomposition analysis as a tool for supporting environmental policymaking," Energy Economics, Elsevier, vol. 115(C).
    16. Stern, David I., 1997. "Limits to substitution and irreversibility in production and consumption: A neoclassical interpretation of ecological economics," Ecological Economics, Elsevier, vol. 21(3), pages 197-215, June.
    17. Court, Christa D. & Munday, Max & Roberts, Annette & Turner, Karen, 2015. "Can hazardous waste supply chain ‘hotspots’ be identified using an input–output framework?," European Journal of Operational Research, Elsevier, vol. 241(1), pages 177-187.
    18. Minihan, Erin S. & Wu, Ziping, 2011. "The Potential Economic and Environmental Costs of GHG Mitigation Measures for Cattle Sectors in Northern Ireland," 85th Annual Conference, April 18-20, 2011, Warwick University, Coventry, UK 108779, Agricultural Economics Society.
    19. Hu, Yi & Yin, Zhifeng & Ma, Jian & Du, Wencui & Liu, Danhe & Sun, Luxi, 2017. "Determinants of GHG emissions for a municipal economy: Structural decomposition analysis of Chongqing," Applied Energy, Elsevier, vol. 196(C), pages 162-169.
    20. Bruckner, Martin & Giljum, Stefan & Fischer, Günther & Tramberend, Sylvia & Börner, Jan, 2018. "The global cropland footprint of the non-food bioeconomy," Discussion Papers 271062, University of Bonn, Center for Development Research (ZEF).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:enreec:v:4:y:1994:i:3:p:265-277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.