IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v9y1996i4p275-98.html
   My bibliography  Save this article

Functional Search in Economics Using Genetic Programming

Author

Listed:
  • Schmertmann, Carl P

Abstract

This paper discusses economic applications of a recently developed artificial intelligence technique-Koza's genetic programming (GP). GP is an evolutionary search method related to genetic algorithms. In GP, populations of potential solutions consist of executable computer algorithms, rather than coded strings. The paper provides an overview of how GP works, and illustrates with two applications: solving for the policy function in a simple optimal growth model, and estimating an unusual regression function. Results suggest that the GP search method can be an interesting and effective tool for economists. Citation Copyright 1996 by Kluwer Academic Publishers.

Suggested Citation

  • Schmertmann, Carl P, 1996. "Functional Search in Economics Using Genetic Programming," Computational Economics, Springer;Society for Computational Economics, vol. 9(4), pages 275-298, November.
  • Handle: RePEc:kap:compec:v:9:y:1996:i:4:p:275-98
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mariano Matilla-Garcia, 2006. "Are trading rules based on genetic algorithms profitable?," Applied Economics Letters, Taylor & Francis Journals, vol. 13(2), pages 123-126.
    2. Beenstock, Michael & Szpiro, George, 2002. "Specification search in nonlinear time-series models using the genetic algorithm," Journal of Economic Dynamics and Control, Elsevier, vol. 26(5), pages 811-835, May.
    3. Peter Woehrmann & Willi Semmler & Martin Lettau, "undated". "Nonparametric Estimation of the Time-varying Sharpe Ratio in Dynamic Asset Pricing Models," IEW - Working Papers 225, Institute for Empirical Research in Economics - University of Zurich.
    4. Mariano Matilla-Garcia, 2005. "A note on cointegrated relationships estimated with genetic algorithms," Applied Economics Letters, Taylor & Francis Journals, vol. 12(4), pages 235-238.
    5. Duffy, John & McNelis, Paul D., 2001. "Approximating and simulating the stochastic growth model: Parameterized expectations, neural networks, and the genetic algorithm," Journal of Economic Dynamics and Control, Elsevier, vol. 25(9), pages 1273-1303, September.
    6. Vinícius Ferraz & Thomas Pitz, 2024. "Analyzing the Impact of Strategic Behavior in an Evolutionary Learning Model Using a Genetic Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 437-475, February.
    7. Uwe Cantner & Bernd Ebersberger & Horst Hanusch & Jens J. Krüger & Andreas Pyka, 2004. "The Twin Peaks in National Income. Parametric and Nonparametric Estimates," Revue économique, Presses de Sciences-Po, vol. 55(6), pages 1127-1144.
    8. Bernd Ebersberger & Uwe Cantner & Horst Hanusch, 2000. "Analyzing Inefficiency Using a Frontier Search Approach," Discussion Paper Series 199, Universitaet Augsburg, Institute for Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:9:y:1996:i:4:p:275-98. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.