IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v65y2025i4d10.1007_s10614-024-10588-3.html
   My bibliography  Save this article

Bitcoin Price Prediction Using Sentiment Analysis and Empirical Mode Decomposition

Author

Listed:
  • Serdar Arslan

    (Cankaya University)

Abstract

Cryptocurrencies have garnered significant attention recently due to widespread investments. Additionally, researchers have increasingly turned to social media, particularly in the context of financial markets, to harness its predictive capabilities. Investors rely on platforms like Twitter to analyze investments and detect trends, which can directly impact the future price movements of Bitcoin. Understanding and analyzing Twitter sentiments can potentially provide insights into future Bitcoin price movements and can shed light on how investor sentiment affects cryptocurrency markets. In this study, we explore the correlation between Twitter activity and Bitcoin prices by examining tweets related to Bitcoin price sentiments. Our proposed model consists of two distinct networks. The first network exclusively utilizes historical price data, which is further decomposed into various components using the Empirical Mode Decomposition method. This decomposition helps mitigate the impact of irregular fluctuations on Bitcoin price predictions. Each of these components is then separately processed by Long Short-Term Memory (LSTM) networks. The second network focuses on modeling user sentiments and emotions in conjunction with Bitcoin market data. User opinions are categorized into positive and negative classes and are integrated with historical data to predict the next-day price using LSTM networks. Finally, the outputs of each network are combined to form the ultimate prediction values. Experimental results demonstrate that Twitter sentiment can effectively helps us predict Bitcoin price trends. Furthermore, to validate our proposed model, we compared it with several state-of-the-art methods. The results indicate that our approach outperforms these existing models in terms of accuracy.

Suggested Citation

  • Serdar Arslan, 2025. "Bitcoin Price Prediction Using Sentiment Analysis and Empirical Mode Decomposition," Computational Economics, Springer;Society for Computational Economics, vol. 65(4), pages 2227-2248, April.
  • Handle: RePEc:kap:compec:v:65:y:2025:i:4:d:10.1007_s10614-024-10588-3
    DOI: 10.1007/s10614-024-10588-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-024-10588-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-024-10588-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:65:y:2025:i:4:d:10.1007_s10614-024-10588-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.