IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v65y2025i3d10.1007_s10614-024-10593-6.html
   My bibliography  Save this article

Applying Machine Learning Algorithms to Predict the Size of the Informal Economy

Author

Listed:
  • João Felix

    (Federal University of Paraíba)

  • Michel Alexandre

    (University of São Paulo)

  • Gilberto Tadeu Lima

    (University of São Paulo)

Abstract

The use of machine learning models and techniques to predict economic variables has been growing lately, motivated by their better performance when compared to that of linear models. Although linear models have the advantage of considerable interpretive power, efforts have intensified in recent years to make machine learning models more interpretable. In this paper, tests are conducted to determine whether models based on machine learning algorithms have better performance relative to that of linear models for predicting the size of the informal economy. The paper also explores whether the determinants of such size detected as the most important by machine learning models are the same as those detected in the literature based on traditional linear models. For this purpose, observations were collected and processed for 122 countries from 2004 to 2014. Next, twelve models (four linear and eight based on machine learning algorithms) were used to predict the size of the informal economy in these countries. The relative importance of the predictive variables in determining the results yielded by the machine learning algorithms was calculated using Shapley values. The results suggest that (i) models based on machine learning algorithms have better predictive performance than that of linear models and (ii) the main determinants detected through the Shapley values coincide with those detected in the literature using traditional linear models.

Suggested Citation

  • João Felix & Michel Alexandre & Gilberto Tadeu Lima, 2025. "Applying Machine Learning Algorithms to Predict the Size of the Informal Economy," Computational Economics, Springer;Society for Computational Economics, vol. 65(3), pages 1169-1189, March.
  • Handle: RePEc:kap:compec:v:65:y:2025:i:3:d:10.1007_s10614-024-10593-6
    DOI: 10.1007/s10614-024-10593-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-024-10593-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-024-10593-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:65:y:2025:i:3:d:10.1007_s10614-024-10593-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.