IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v65y2025i2d10.1007_s10614-024-10613-5.html
   My bibliography  Save this article

Investor Structure and Corn Futures Price Volatility in China: Evidence Based on the Agent-Based Model

Author

Listed:
  • Yuhe Zhao

    (China Agricultural University)

  • Ronghua Ju

    (China Agricultural University)

Abstract

This study investigates how the investor structures affect the corn futures price volatility using corn futures and spot price daily data ranging from 5 January 2009 to 31 December 2022. Our contribution to the expanding literature lies in the introduction of an artificial Chinese corn futures market model based on the agent-based model (ABM), which offers an innovative solution to the issue of the unavailability of commercial positions data. Moreover, we improve the prediction accuracy of corn futures prices by the autoregressive neural network (AR-Net) model. The scenario simulation results demonstrate that hedgers can stabilize corn futures prices, and price volatility tends to be more dramatic in structures with a low hedger ratio. In addition, robustness tests by the empirical mode decomposition (EMD) model support the conclusion.

Suggested Citation

  • Yuhe Zhao & Ronghua Ju, 2025. "Investor Structure and Corn Futures Price Volatility in China: Evidence Based on the Agent-Based Model," Computational Economics, Springer;Society for Computational Economics, vol. 65(2), pages 937-961, February.
  • Handle: RePEc:kap:compec:v:65:y:2025:i:2:d:10.1007_s10614-024-10613-5
    DOI: 10.1007/s10614-024-10613-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-024-10613-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-024-10613-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:65:y:2025:i:2:d:10.1007_s10614-024-10613-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.