IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v64y2024i3d10.1007_s10614-023-10484-2.html
   My bibliography  Save this article

Exchange Rate Forecasting Based on Integration of Gated Recurrent Unit (GRU) and CBOE Volatility Index (VIX)

Author

Listed:
  • Hao Xu

    (Washington State University)

  • Cheng Xu

    (Xi’an Jiaotong-Liverpool University)

  • Yanqi Sun

    (Beijing Institute of Petrochemical Technology)

  • Jin Peng

    (University of Colorado, Colorado Springs)

  • Wenqizi Tian

    (China Foreign Affairs University)

  • Yan He

    (Xi’an Jiaotong-Liverpool University)

Abstract

The foreign exchange market is the most liquid financial market globally, attracting investors looking for lucrative investment opportunities. Despite numerous techniques developed for forecasting foreign exchange trends, accurate and reliable models remain scarce. This article presents a novel approach that combines fundamental and technical analysis to predict exchange rates for the USD-CNY, EUR-USD, and GBP-USD currency pairs. Additionally, we extend the model’s architecture by using China CSI300 stock index futures (CIFc1) instead of VIX, LSTM instead of GRU, and adding data pre-processing. The results show that our method is more accurate and stable than other approaches mentioned above, including traditional methods based on fundamental analysis. This study highlights the importance of the idea of combing fundamental information with deep learning, and underscores the effectiveness of integrating technique analysis and fundamental analysis, and lays the groundwork for further extensions and experimentation in foreign exchange forecasting.

Suggested Citation

  • Hao Xu & Cheng Xu & Yanqi Sun & Jin Peng & Wenqizi Tian & Yan He, 2024. "Exchange Rate Forecasting Based on Integration of Gated Recurrent Unit (GRU) and CBOE Volatility Index (VIX)," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1539-1567, September.
  • Handle: RePEc:kap:compec:v:64:y:2024:i:3:d:10.1007_s10614-023-10484-2
    DOI: 10.1007/s10614-023-10484-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-023-10484-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-023-10484-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lui, Yu-Hon & Mole, David, 1998. "The use of fundamental and technical analyses by foreign exchange dealers: Hong Kong evidence," Journal of International Money and Finance, Elsevier, vol. 17(3), pages 535-545, June.
    2. Smales, Lee A., 2022. "Spreading the fear: The central role of CBOE VIX in global stock market uncertainty," Global Finance Journal, Elsevier, vol. 51(C).
    3. Zhiyuan Pan & Yudong Wang & Li Liu & Qing Wang, 2019. "Improving volatility prediction and option valuation using VIX information: A volatility spillover GARCH model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(6), pages 744-776, June.
    4. Charles Engel & Kenneth D. West, 2005. "Exchange Rates and Fundamentals," Journal of Political Economy, University of Chicago Press, vol. 113(3), pages 485-517, June.
    5. Qiao, Gaoxiu & Teng, Yuxin & Li, Weiping & Liu, Wenwen, 2019. "Improving volatility forecasting based on Chinese volatility index information: Evidence from CSI 300 index and futures markets," The North American Journal of Economics and Finance, Elsevier, vol. 49(C), pages 133-151.
    6. Barbara Rossi, 2013. "Exchange Rate Predictability," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1063-1119, December.
    7. Molodtsova, Tanya & Papell, David H., 2009. "Out-of-sample exchange rate predictability with Taylor rule fundamentals," Journal of International Economics, Elsevier, vol. 77(2), pages 167-180, April.
    8. Shiu‐Sheng Chen & Cheng‐Che Hsu, 2019. "Do stock markets have predictive content for exchange rate movements?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(7), pages 699-713, November.
    9. Meese, Richard A. & Rogoff, Kenneth, 1983. "Empirical exchange rate models of the seventies : Do they fit out of sample?," Journal of International Economics, Elsevier, vol. 14(1-2), pages 3-24, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed, Jameel & Straetmans, Stefan, 2015. "Predicting exchange rate cycles utilizing risk factors," Journal of Empirical Finance, Elsevier, vol. 34(C), pages 112-130.
    2. Florian Huber & Daniel Kaufmann, 2020. "Trend Fundamentals and Exchange Rate Dynamics," Economica, London School of Economics and Political Science, vol. 87(348), pages 1016-1036, October.
    3. Joseph P. Byrne & Dimitris Korobilis & Pinho J. Ribeiro, 2018. "On The Sources Of Uncertainty In Exchange Rate Predictability," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 59(1), pages 329-357, February.
    4. Byrne, Joseph P. & Korobilis, Dimitris & Ribeiro, Pinho J., 2016. "Exchange rate predictability in a changing world," Journal of International Money and Finance, Elsevier, vol. 62(C), pages 1-24.
    5. Ahmed, Shamim & Liu, Xiaoquan & Valente, Giorgio, 2016. "Can currency-based risk factors help forecast exchange rates?," International Journal of Forecasting, Elsevier, vol. 32(1), pages 75-97.
    6. Dick, Christian D. & MacDonald, Ronald & Menkhoff, Lukas, 2015. "Exchange rate forecasts and expected fundamentals," Journal of International Money and Finance, Elsevier, vol. 53(C), pages 235-256.
    7. Kharrat, Sabrine & Hammami, Yacine & Fatnassi, Ibrahim, 2020. "On the cross-sectional relation between exchange rates and future fundamentals," Economic Modelling, Elsevier, vol. 89(C), pages 484-501.
    8. Stijn Claessens & M Ayhan Kose, 2018. "Frontiers of macrofinancial linkages," BIS Papers, Bank for International Settlements, number 95, October –.
    9. Andrew Lilley & Matteo Maggiori & Brent Neiman & Jesse Schreger, 2022. "Exchange Rate Reconnect," The Review of Economics and Statistics, MIT Press, vol. 104(4), pages 845-855, October.
    10. Demetrescu, Matei & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2023. "Transformed regression-based long-horizon predictability tests," Journal of Econometrics, Elsevier, vol. 237(2).
    11. Joseph Agyapong, 2021. "Application of Taylor Rule Fundamentals in Forecasting Exchange Rates," Economies, MDPI, vol. 9(2), pages 1-27, June.
    12. Hai Long Vo & Duc Hong Vo, 2023. "The purchasing power parity and exchange‐rate economics half a century on," Journal of Economic Surveys, Wiley Blackwell, vol. 37(2), pages 446-479, April.
    13. Stijn Claessens & M. Ayhan Kose, 2017. "Asset prices and macroeconomic outcomes: A survey," CAMA Working Papers 2017-76, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    14. Ince, Onur & Molodtsova, Tanya & Papell, David H., 2016. "Taylor rule deviations and out-of-sample exchange rate predictability," Journal of International Money and Finance, Elsevier, vol. 69(C), pages 22-44.
    15. Pincheira-Brown, Pablo & Neumann, Federico, 2020. "Can we beat the Random Walk? The case of survey-based exchange rate forecasts in Chile," Finance Research Letters, Elsevier, vol. 37(C).
    16. Sarthak Behera & Hyeongwoo Kim, 2019. "Forecasting Dollar Real Exchange Rates and the Role of Real Activity Factors," Auburn Economics Working Paper Series auwp2019-04, Department of Economics, Auburn University.
    17. Ribeiro, Pinho J., 2017. "Selecting exchange rate fundamentals by bootstrap," International Journal of Forecasting, Elsevier, vol. 33(4), pages 894-914.
    18. Amat, Christophe & Michalski, Tomasz & Stoltz, Gilles, 2018. "Fundamentals and exchange rate forecastability with simple machine learning methods," Journal of International Money and Finance, Elsevier, vol. 88(C), pages 1-24.
    19. Hsiu-Hsin Ko, 2016. "Exchange Rate Predictability in Finite Samples," The Japanese Economic Review, Japanese Economic Association, vol. 67(3), pages 361-378, September.
    20. Salisu, Afees A. & Gupta, Rangan & Kim, Won Joong, 2022. "Exchange rate predictability with nine alternative models for BRICS countries," Journal of Macroeconomics, Elsevier, vol. 71(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:64:y:2024:i:3:d:10.1007_s10614-023-10484-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.