IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v56y2020i3d10.1007_s10614-019-09951-6.html
   My bibliography  Save this article

Heuristic Switching Model and Exploration-Exploitation Algorithm to Describe Long-Run Expectations in LtFEs: a Comparison

Author

Listed:
  • Annarita Colasante

    (University Jaume I)

  • Simone Alfarano

    (University Jaume I)

  • Eva Camacho-Cuena

    (University Jaume I)

Abstract

We elicit individual expectations in a series of Learning-to-Forecast Experiments (LtFEs) with different feedback mechanisms between expectations and market price: positive and negative feedback markets. We implement the EEA proposed by Colasante et al. (J Evol Econ 2018b. https://doi.org/10.1007/S00191-018-0585-1 ). We compare the performance of two learning algorithms in replicating individual short and long-run expectations: the Exploration-Exploitation Algorithm (EEA) and the Heuristic Switching Model (HSM). Moreover, we modify the existing version of the HSM in order to incorporate the long run predictions. Although the two algorithms provide a fairly good description of prices in the short run, the EEA outperforms the HSM in replicating the main characteristics of individual expectation in the long-run, both in terms of coordination of individual expectations and convergence of expectations to the fundamental value.

Suggested Citation

  • Annarita Colasante & Simone Alfarano & Eva Camacho-Cuena, 2020. "Heuristic Switching Model and Exploration-Exploitation Algorithm to Describe Long-Run Expectations in LtFEs: a Comparison," Computational Economics, Springer;Society for Computational Economics, vol. 56(3), pages 623-658, October.
  • Handle: RePEc:kap:compec:v:56:y:2020:i:3:d:10.1007_s10614-019-09951-6
    DOI: 10.1007/s10614-019-09951-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-019-09951-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-019-09951-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lucas, Robert E, Jr & Prescott, Edward C, 1971. "Investment Under Uncertainty," Econometrica, Econometric Society, vol. 39(5), pages 659-681, September.
    2. Annarita Colasante & Simone Alfarano & Eva Camacho-Cuena, 2019. "The term structure of cross-sectional dispersion of expectations in a Learning-to-Forecast Experiment," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(3), pages 491-520, September.
    3. Hommes, Cars & Lux, Thomas, 2013. "Individual Expectations And Aggregate Behavior In Learning-To-Forecast Experiments," Macroeconomic Dynamics, Cambridge University Press, vol. 17(2), pages 373-401, March.
    4. Hommes, Cars & Sonnemans, Joep & Tuinstra, Jan & van de Velden, Henk, 2005. "A strategy experiment in dynamic asset pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 29(4), pages 823-843, April.
    5. Annarita Colasante & Simone Alfarano & Eva Camacho & Mauro Gallegati, 2018. "Long-run expectations in a learning-to-forecast experiment," Applied Economics Letters, Taylor & Francis Journals, vol. 25(10), pages 681-687, June.
    6. Bao, Te & Duffy, John & Hommes, Cars, 2013. "Learning, forecasting and optimizing: An experimental study," European Economic Review, Elsevier, vol. 61(C), pages 186-204.
    7. Assenza, T. & Heemeijer, P. & Hommes, C.H. & Massaro, D., 2011. "Individual Expectations and Aggregate Macro Behavior," CeNDEF Working Papers 11-01, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    8. Hommes, Cars, 2018. "Behavioral & experimental macroeconomics and policy analysis: a complex systems approach," Working Paper Series 2201, European Central Bank.
    9. Bao, Te & Hommes, Cars & Sonnemans, Joep & Tuinstra, Jan, 2012. "Individual expectations, limited rationality and aggregate outcomes," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1101-1120.
    10. Tiziana Assenza & Te Bao & Cars Hommes & Domenico Massaro, 2014. "Experiments on Expectations in Macroeconomics and Finance," Research in Experimental Economics, in: Experiments in Macroeconomics, volume 17, pages 11-70, Emerald Group Publishing Limited.
    11. Hommes,Cars, 2015. "Behavioral Rationality and Heterogeneous Expectations in Complex Economic Systems," Cambridge Books, Cambridge University Press, number 9781107564978, January.
    12. Diks, Cees & van der Weide, Roy, 2005. "Herding, a-synchronous updating and heterogeneity in memory in a CBS," Journal of Economic Dynamics and Control, Elsevier, vol. 29(4), pages 741-763, April.
    13. Marimon Ramon & Spear Stephen E. & Sunder Shyam, 1993. "Expectationally Driven Market Volatility: An Experimental Study," Journal of Economic Theory, Elsevier, vol. 61(1), pages 74-103, October.
    14. Friedman, Milton, 1966. "Essays in Positive Economics," University of Chicago Press Economics Books, University of Chicago Press, number 9780226264035, December.
    15. Annarita Colasante & Simone Alfarano & Eva Camacho-Cuena & Mauro Gallegati, 2020. "Long-run expectations in a learning-to-forecast experiment: a simulation approach," Journal of Evolutionary Economics, Springer, vol. 30(1), pages 75-116, January.
    16. Anufriev, Mikhail & Assenza, Tiziana & Hommes, Cars & Massaro, Domenico, 2013. "Interest Rate Rules And Macroeconomic Stability Under Heterogeneous Expectations," Macroeconomic Dynamics, Cambridge University Press, vol. 17(8), pages 1574-1604, December.
    17. Brock, William A. & Hommes, Cars H., 1998. "Heterogeneous beliefs and routes to chaos in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1235-1274, August.
    18. Mikhail Anufriev & Cars Hommes, 2012. "Evolutionary Selection of Individual Expectations and Aggregate Outcomes in Asset Pricing Experiments," American Economic Journal: Microeconomics, American Economic Association, vol. 4(4), pages 35-64, November.
    19. Heemeijer, Peter & Hommes, Cars & Sonnemans, Joep & Tuinstra, Jan, 2009. "Price stability and volatility in markets with positive and negative expectations feedback: An experimental investigation," Journal of Economic Dynamics and Control, Elsevier, vol. 33(5), pages 1052-1072, May.
    20. Te Bao & Li Ding, 2016. "–Nonrecourse Mortgage and Housing Price Boom, Bust, and Rebound," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 44(3), pages 584-605, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Domenico Delli Gatti & Filippo Gusella & Giorgio Ricchiuti, 2024. "Endogenous vs Exogenous Instability: An Out-of-Sample Comparison," Working Papers - Economics wp2024_05.rdf, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Annarita Colasante & Simone Alfarano & Eva Camacho-Cuena & Mauro Gallegati, 2020. "Long-run expectations in a learning-to-forecast experiment: a simulation approach," Journal of Evolutionary Economics, Springer, vol. 30(1), pages 75-116, January.
    2. Annarita Colasante & Simone Alfarano & Eva Camacho-Cuena, 2019. "The term structure of cross-sectional dispersion of expectations in a Learning-to-Forecast Experiment," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(3), pages 491-520, September.
    3. Simone Alfarano & Eva Camacho-Cuena & Annarita Colasante & Alba Ruiz-Buforn, 2024. "The effect of time-varying fundamentals in learning-to-forecast experiments," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 19(4), pages 619-647, October.
    4. Bao, Te & Hommes, Cars & Pei, Jiaoying, 2021. "Expectation formation in finance and macroeconomics: A review of new experimental evidence," Journal of Behavioral and Experimental Finance, Elsevier, vol. 32(C).
    5. Colasante, Annarita & Palestrini, Antonio & Russo, Alberto & Gallegati, Mauro, 2017. "Adaptive expectations versus rational expectations: Evidence from the lab," International Journal of Forecasting, Elsevier, vol. 33(4), pages 988-1006.
    6. Makarewicz, Tomasz, 2021. "Traders, forecasters and financial instability: A model of individual learning of anchor-and-adjustment heuristics," Journal of Economic Behavior & Organization, Elsevier, vol. 190(C), pages 626-673.
    7. Makarewicz, Tomasz, 2019. "Traders, forecasters and financial instability: A model of individual learning of anchor-and-adjustment heuristics," BERG Working Paper Series 141, Bamberg University, Bamberg Economic Research Group.
    8. Hommes, Cars, 2018. "Behavioral & experimental macroeconomics and policy analysis: a complex systems approach," Working Paper Series 2201, European Central Bank.
    9. Hommes, Cars & Massaro, Domenico & Weber, Matthias, 2019. "Monetary policy under behavioral expectations: Theory and experiment," European Economic Review, Elsevier, vol. 118(C), pages 193-212.
    10. Tiziana Assenza & William A. Brock & Cars H. Hommes, 2017. "Animal Spirits, Heterogeneous Expectations, And The Amplification And Duration Of Crises," Economic Inquiry, Western Economic Association International, vol. 55(1), pages 542-564, January.
    11. Colasante, Annarita & Palestrini, Antonio & Russo, Alberto & Gallegati, Mauro, 2015. "Heterogeneous Adaptive Expectations and Coordination in a Learning-to-Forecast Experiment," MPRA Paper 66578, University Library of Munich, Germany.
    12. Annarita COLASANTE & Antonio PALESTRINI & Alberto RUSSO & Mauro GALLEGATI, 2015. "Adaptive Expectations with Correction Bias: Evidence from the lab," Working Papers 409, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    13. Zhou Lu & Te Bao & Xiaohua Yu, 2021. "Gender and Bubbles in Experimental Markets with Positive and Negative Expectation Feedback," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1307-1326, April.
    14. Zhu, Jiahua & Bao, Te & Chia, Wai Mun, 2021. "Evolutionary selection of forecasting and quantity decision rules in experimental asset markets," Journal of Economic Behavior & Organization, Elsevier, vol. 182(C), pages 363-404.
    15. Tiziana Assenza & Te Bao & Cars Hommes & Domenico Massaro, 2014. "Experiments on Expectations in Macroeconomics and Finance," Research in Experimental Economics, in: Experiments in Macroeconomics, volume 17, pages 11-70, Emerald Group Publishing Limited.
    16. Te Bao & Cars Hommes & Tomasz Makarewicz, 2017. "Bubble Formation and (In)Efficient Markets in Learning‐to‐forecast and optimise Experiments," Economic Journal, Royal Economic Society, vol. 127(605), pages 581-609, October.
    17. Hommes, Cars, 2011. "The heterogeneous expectations hypothesis: Some evidence from the lab," Journal of Economic Dynamics and Control, Elsevier, vol. 35(1), pages 1-24, January.
    18. Kopányi, Dávid & Rabanal, Jean Paul & Rud, Olga A. & Tuinstra, Jan, 2019. "Can competition between forecasters stabilize asset prices in learning to forecast experiments?," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    19. Mikhail Anufriev & Cars Hommes, 2012. "Evolutionary Selection of Individual Expectations and Aggregate Outcomes in Asset Pricing Experiments," American Economic Journal: Microeconomics, American Economic Association, vol. 4(4), pages 35-64, November.
    20. Cars Hommes, 2010. "The heterogeneous expectations hypothesis: some evidence from the lab," Post-Print hal-00753041, HAL.

    More about this item

    Keywords

    Expectations; Experiment; Evolutionary learning;
    All these keywords.

    JEL classification:

    • D03 - Microeconomics - - General - - - Behavioral Microeconomics: Underlying Principles
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • C91 - Mathematical and Quantitative Methods - - Design of Experiments - - - Laboratory, Individual Behavior

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:56:y:2020:i:3:d:10.1007_s10614-019-09951-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.