IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v44y2014i2p253-268.html
   My bibliography  Save this article

An Optimal Balanced Economic Growth and Abatement Pathway for China Under the Carbon Emissions Budget

Author

Listed:
  • Yongbin Zhu
  • Zheng Wang

Abstract

Arguments over equity during abatement goal setting is the principal obstacle to climate mitigation cooperation, while allocating global emissions to each country as deduced from the climate objective according to certain equitable principles offers an effective alternative to ending this dispute. Such an alternative also endows each country with the freedom to determine and develop its own pathway under its emissions budget while ensuring that global climate targets are met. Within this context, this paper integrated economic growth theory with the optimal control model and simulated the optimal abatement pathway as well as the economic growth trajectory for China within the allocated emissions budget. The study found that research and development (R&D) investment is an effective way of improving energy efficiency. Our simulation showed that the R&D intensity of the gross domestic product (GDP) would see a slight decline for the inceptive period, followed by an aggressive rise to a relatively high level before decreasing again. Under the 450 ppm carbon concentration target, the R&D investment intensity would have to increase significantly beginning from 2014 because of the more stringent demands as compared to other less rigorous targets such as 500 ppm. The economy would continue to grow, although growth would occur less rapidly under rigorous targets: relative to 2007 levels, the GDP would grow by 11-fold and 15-fold under the 450 and 500 ppm scenarios, respectively. Before enforcement of an effective R&D investment, the carbon emissions would increase rapidly, while after enforcement, the speed of carbon emissions would slow down. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Yongbin Zhu & Zheng Wang, 2014. "An Optimal Balanced Economic Growth and Abatement Pathway for China Under the Carbon Emissions Budget," Computational Economics, Springer;Society for Computational Economics, vol. 44(2), pages 253-268, August.
  • Handle: RePEc:kap:compec:v:44:y:2014:i:2:p:253-268
    DOI: 10.1007/s10614-013-9383-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10614-013-9383-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10614-013-9383-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert M. Solow, 1956. "A Contribution to the Theory of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 70(1), pages 65-94.
    2. Peter Bohm & Bjorn Larsen, 1994. "Fairness in a tradeable-permit treaty for carbon emissions reductions in Europe and the former Soviet Union," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 4(3), pages 219-239, June.
    3. Nordhaus, William D & Yang, Zili, 1996. "A Regional Dynamic General-Equilibrium Model of Alternative Climate-Change Strategies," American Economic Review, American Economic Association, vol. 86(4), pages 741-765, September.
    4. Raymond W. Goldsmith, 1951. "A Perpetual Inventory of National Wealth," NBER Chapters, in: Studies in Income and Wealth, Volume 14, pages 5-73, National Bureau of Economic Research, Inc.
    5. Bosetti, Valentina & Carraro, Carlo & Massetti, Emanuele & Sgobbi, Alessandra & Tavoni, Massimo, 2009. "Optimal energy investment and R&D strategies to stabilize atmospheric greenhouse gas concentrations," Resource and Energy Economics, Elsevier, vol. 31(2), pages 123-137, May.
    6. Valentina Bosetti & Emanuele Massetti & Massimo Tavoni, 2007. "The WITCH Model. Structure, Baseline, Solutions," Working Papers 2007.10, Fondazione Eni Enrico Mattei.
    7. Popp, David, 2004. "ENTICE: endogenous technological change in the DICE model of global warming," Journal of Environmental Economics and Management, Elsevier, vol. 48(1), pages 742-768, July.
    8. Manne, Alan & Mendelsohn, Robert & Richels, Richard, 1995. "MERGE : A model for evaluating regional and global effects of GHG reduction policies," Energy Policy, Elsevier, vol. 23(1), pages 17-34, January.
    9. David Cass, 1965. "Optimum Growth in an Aggregative Model of Capital Accumulation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 32(3), pages 233-240.
    10. Burniaux, Jean-Marc & Truong Truong, 2002. "GTAP-E: An Energy-Environmental Version of the GTAP Model," GTAP Technical Papers 923, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    11. Burniaux, Jean-March & Truong, Truong P., 2002. "Gtap-E: An Energy-Environmental Version Of The Gtap Model," Technical Papers 28705, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    12. Adam Rose & Brandt Stevens & Jae Edmonds & Marshall Wise, 1998. "International Equity and Differentiation in Global Warming Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 12(1), pages 25-51, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Yi-Ming & Mi, Zhi-Fu & Huang, Zhimin, 2015. "Climate policy modeling: An online SCI-E and SSCI based literature review," Omega, Elsevier, vol. 57(PA), pages 70-84.
    2. J. Farmer & Cameron Hepburn & Penny Mealy & Alexander Teytelboym, 2015. "A Third Wave in the Economics of Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 329-357, October.
    3. Tol, Richard S.J., 2024. "A meta-analysis of the total economic impact of climate change," Energy Policy, Elsevier, vol. 185(C).
    4. Lecocq, Franck & Shalizi, Zmarak, 2007. "How might climate change affect economic growth in developing countries ? a review of the growth literature with a climate lens," Policy Research Working Paper Series 4315, The World Bank.
    5. Zha, Donglan & Zhou, Dequn, 2014. "The elasticity of substitution and the way of nesting CES production function with emphasis on energy input," Applied Energy, Elsevier, vol. 130(C), pages 793-798.
    6. Channing Arndt & Sherman Robinson & Finn Tarp, 2006. "Trade Reform and Gender in Mozambique," Nordic Journal of Political Economy, Nordic Journal of Political Economy, vol. 32, pages 73-89.
    7. Naqvi, Asjad & Stockhammer, Engelbert, 2018. "Directed Technological Change in a Post-Keynesian Ecological Macromodel," Ecological Economics, Elsevier, vol. 154(C), pages 168-188.
    8. Maria Berrittella & Andrea Bigano & Roberto Roson & Richard S.J. Tol, 2004. "A General Equilibrium Analysis Of Climate Change Impacts On Tourism," Working Papers FNU-49, Research unit Sustainability and Global Change, Hamburg University, revised Nov 2004.
    9. Diana Dimitrova, 2018. "The 2018 Nobel Prize in Economics," Economic Thought journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 6, pages 98-152.
    10. ROSON Roberto, 2010. "Modelling the Economic Impact of Climate Change," EcoMod2003 330700127, EcoMod.
    11. Wei Jin, 2012. "Can Technological Innovation Help China Take on Its Climate Responsibility? A Computable General Equilibrium Analysis," CAMA Working Papers 2012-51, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    12. Roberto Roson & Francesco Bosello, 2007. "Estimating a Climate Change Damage Function through General Equilibrium Modeling," Working Papers 2007_08, Department of Economics, University of Venice "Ca' Foscari".
    13. Yazid Dissou & Lilia Karnizova & Qian Sun, 2015. "Industry-level Econometric Estimates of Energy-Capital-Labor Substitution with a Nested CES Production Function," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 43(1), pages 107-121, March.
    14. Nordhaus, William, 2013. "Integrated Economic and Climate Modeling," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 1069-1131, Elsevier.
    15. Laurence J. Kotlikoff & Andrey V. ZUBAREV & Andrey POLBIN, 2021. "Will the Paris accord accelerate climate change [Ускоряет Ли Парижское Соглашение Изменение Климата?]," Ekonomicheskaya Politika / Economic Policy, Russian Presidential Academy of National Economy and Public Administration, vol. 1, pages 8-37, February.
    16. Coppens, Léo & Dietz, Simon & Venmans, Frank, 2024. "Optimal climate policy under exogenous and endogenous technical change: making sense of the different approaches," LSE Research Online Documents on Economics 124548, London School of Economics and Political Science, LSE Library.
    17. Zhu, Yongbin & Shi, Yajuan & Wang, Zheng, 2014. "How much CO2 emissions will be reduced through industrial structure change if China focuses on domestic rather than international welfare?," Energy, Elsevier, vol. 72(C), pages 168-179.
    18. Simon Dietz & Nicholas Stern, 2014. "Endogenous growth, convexity of damages and climate risk: how Nordhaus� framework supports deep cuts in carbon emissions," GRI Working Papers 159, Grantham Research Institute on Climate Change and the Environment.
    19. Zhou, P. & Wang, M., 2016. "Carbon dioxide emissions allocation: A review," Ecological Economics, Elsevier, vol. 125(C), pages 47-59.
    20. Lucas Bretschger & Roger Ramer & Florentine Schwark, 2010. "Long-Run Effects of Post-Kyoto Policies: Applying a Fully Dynamic CGE model with Heterogeneous Capital," CER-ETH Economics working paper series 10/129, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:44:y:2014:i:2:p:253-268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.