IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v32y2008i1p1-2.html
   My bibliography  Save this article

New Advances in Financial Economics: Heterogeneity and Simulation

Author

Listed:
  • Silvano Cincotti
  • Laura Gardini
  • Thomas Lux

Abstract

No abstract is available for this item.

Suggested Citation

  • Silvano Cincotti & Laura Gardini & Thomas Lux, 2008. "New Advances in Financial Economics: Heterogeneity and Simulation," Computational Economics, Springer;Society for Computational Economics, vol. 32(1), pages 1-2, September.
  • Handle: RePEc:kap:compec:v:32:y:2008:i:1:p:1-2
    DOI: 10.1007/s10614-008-9126-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10614-008-9126-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10614-008-9126-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vygintas Gontis & Shlomo Havlin & Aleksejus Kononovicius & Boris Podobnik & H. Eugene Stanley, 2015. "Stochastic model of financial markets reproducing scaling and memory in volatility return intervals," Papers 1507.05203, arXiv.org, revised Oct 2016.
    2. George Halkos & Mike G. Tsionas, 2019. "Accounting for Heterogeneity in Environmental Performance Using Data Envelopment Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 54(3), pages 1005-1025, October.
    3. Anna Kowalska-Pyzalska & Katarzyna Maciejowska & Katarzyna Sznajd-Weron & Rafal Weron, 2013. "Going green: Agent-based modeling of the diffusion of dynamic electricity tariffs," HSC Research Reports HSC/13/05, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    4. Aleksejus Kononovicius & Vygintas Gontis, 2014. "Herding interactions as an opportunity to prevent extreme events in financial markets," Papers 1409.8024, arXiv.org, revised May 2015.
    5. Gontis, V. & Havlin, S. & Kononovicius, A. & Podobnik, B. & Stanley, H.E., 2016. "Stochastic model of financial markets reproducing scaling and memory in volatility return intervals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1091-1102.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:32:y:2008:i:1:p:1-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.