IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v28y2006i3p291-309.html
   My bibliography  Save this article

Polynomial Algorithms for Pricing Path-Dependent Interest Rate Instruments

Author

Listed:
  • Ronald Hochreiter
  • Georg Pflug

Abstract

In this paper we study algorithms for pricing of interest rate instruments using recombining tree (scenario lattice) interest models. The price is defined as expected discounted cash flow. If the cash-flow generated by the instrument depends on the full or partial history of interest rates (path-dependent contracts), then pricing algorithms are typically of exponential complexity. We show that for some models, including product form cash-flows, additive cash-flows, delayed cash-flows and limited path-dependent cash-flows, polynomial pricing algorithms exist. Copyright Springer Science + Business Media, Inc. 2006

Suggested Citation

  • Ronald Hochreiter & Georg Pflug, 2006. "Polynomial Algorithms for Pricing Path-Dependent Interest Rate Instruments," Computational Economics, Springer;Society for Computational Economics, vol. 28(3), pages 291-309, October.
  • Handle: RePEc:kap:compec:v:28:y:2006:i:3:p:291-309
    DOI: 10.1007/s10614-006-9049-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10614-006-9049-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10614-006-9049-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    2. Ho, Thomas S Y & Lee, Sang-bin, 1986. "Term Structure Movements and Pricing Interest Rate Contingent Claims," Journal of Finance, American Finance Association, vol. 41(5), pages 1011-1029, December.
    3. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    4. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    5. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    6. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    7. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    8. Robert A. Jarrow & Arkadev Chatterjea, 2019. "Interest Rates," World Scientific Book Chapters, in: An Introduction to Derivative Securities, Financial Markets, and Risk Management, chapter 2, pages 22-52, World Scientific Publishing Co. Pte. Ltd..
    9. Raoul Pietersz & Antoon Pelsser & Marcel van Regenmortel, 2005. "Fast drift approximated pricing in the BGM model," Finance 0502005, University Library of Munich, Germany.
    10. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Golbabai & L. Ballestra & D. Ahmadian, 2014. "A Highly Accurate Finite Element Method to Price Discrete Double Barrier Options," Computational Economics, Springer;Society for Computational Economics, vol. 44(2), pages 153-173, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. Raoul Pietersz & Antoon Pelsser, 2010. "A comparison of single factor Markov-functional and multi factor market models," Review of Derivatives Research, Springer, vol. 13(3), pages 245-272, October.
    3. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    4. Bueno-Guerrero, Alberto & Moreno, Manuel & Navas, Javier F., 2015. "Stochastic string models with continuous semimartingales," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 229-246.
    5. Ravi Kashyap, 2022. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Annals of Operations Research, Springer, vol. 315(2), pages 1175-1215, August.
    6. Ravi Kashyap, 2016. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Papers 1609.01274, arXiv.org, revised Mar 2022.
    7. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    8. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    9. Frank De Jong & Joost Driessen & Antoon Pelsser, 2001. "Libor Market Models versus Swap Market Models for Pricing Interest Rate Derivatives: An Empirical Analysis," Review of Finance, European Finance Association, vol. 5(3), pages 201-237.
    10. Xiao Lin, 2016. "The Zero-Coupon Rate Model for Derivatives Pricing," Papers 1606.01343, arXiv.org, revised Feb 2022.
    11. Arismendi-Zambrano, Juan & Belitsky, Vladimir & Sobreiro, Vinicius Amorim & Kimura, Herbert, 2022. "The implications of dependence, tail dependence, and bounds’ measures for counterparty credit risk pricing," Journal of Financial Stability, Elsevier, vol. 58(C).
    12. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175, September.
    13. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, March.
    14. Kuo, I-Doun & Lin, Yueh-Neng, 2009. "Empirical performance of multifactor term structure models for pricing and hedging Eurodollar futures options," Review of Financial Economics, Elsevier, vol. 18(1), pages 23-32, January.
    15. J. C. Arismendi-Zambrano & Vladimir Belitsky & Vinicius Amorim Sobreiro & Herbert Kimura, 2020. "The Implications of Tail Dependency Measures for Counterparty Credit Risk Pricing," Economics Department Working Paper Series n306-20.pdf, Department of Economics, National University of Ireland - Maynooth.
    16. Sebastián A. Rey, 2016. "Theory of long-term interest rates," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 1-18, September.
    17. Robert R. Bliss & Ehud I. Ronn, 1997. "Callable U.S. Treasury bonds: optimal calls, anomalies, and implied volatilities," FRB Atlanta Working Paper 97-1, Federal Reserve Bank of Atlanta.
    18. R.C. Stapleton & Marti G. Subrahmanyam, 1999. "The Term Structure of Interest Rate-Futures Prices," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-045, New York University, Leonard N. Stern School of Business-.
    19. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    20. Anders B. Trolle & Eduardo S. Schwartz, 2009. "A General Stochastic Volatility Model for the Pricing of Interest Rate Derivatives," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 2007-2057, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:28:y:2006:i:3:p:291-309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.