IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v24y2005i4p305-319.html
   My bibliography  Save this article

Identifying Volatility Clusters Using the PPM: A Sensitivity Analysis

Author

Listed:
  • Rosangela Loschi
  • Leonardo Bastos
  • Pilar Iglesias

Abstract

Several previous works show that, in general, financial time series are characterized by periods of large volatility followed by periods of relative quitness. In this paper we consider the product partition model (PPM) to identify changes in the volatility extending it to identify multiple change points in normal variances assuming known means. Yao’s prior cohesions and a conjugate prior distribution for the variance – which in this case is a Inverted-Gamma distribution – are assumed. The ultimate goal is to provide a sensitivity analysis to the product estimates assuming different prior specifications for the parameter which indexes the Yao’s cohesions and also for the variance. We analyze a Chilean stock market return series and conclude that the product estimates for the volatility of this series are strongly influenced by the prior specifications of both parameters. Copyright Springer Science + Business Media, Inc. 2005

Suggested Citation

  • Rosangela Loschi & Leonardo Bastos & Pilar Iglesias, 2005. "Identifying Volatility Clusters Using the PPM: A Sensitivity Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 24(4), pages 305-319, June.
  • Handle: RePEc:kap:compec:v:24:y:2005:i:4:p:305-319
    DOI: 10.1007/s10614-005-5169-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10614-005-5169-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10614-005-5169-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jushan Bai, 1997. "Estimation Of A Change Point In Multiple Regression Models," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 551-563, November.
    2. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    3. Arellano-Valle, Reinaldo B. & Bolfarine, Heleno, 1995. "On some characterizations of the t-distribution," Statistics & Probability Letters, Elsevier, vol. 25(1), pages 79-85, October.
    4. Ulrich Menzefricke, 1981. "A Bayesian Analysis of a Change in the Precision of a Sequence of Independent Normal Random Variables at an Unknown Time Point," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 30(2), pages 141-146, June.
    5. Loschi, R. H. & Cruz, F. R. B., 2002. "An analysis of the influence of some prior specifications in the identification of change points via product partition model," Computational Statistics & Data Analysis, Elsevier, vol. 39(4), pages 477-501, June.
    6. Fernando A. Quintana & Pilar L. Iglesias, 2003. "Bayesian clustering and product partition models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 557-574, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guglielmo Maria Caporale & Juncal Cuñado & Luis A. Gil-Alana, 2013. "Modelling long-run trends and cycles in financial time series data," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(3), pages 405-421, May.
    2. P. A. Nazarov & Kazakova, Maria, 2014. "Theoretical Basis of Prediction of Main Budget Parameters of Country," Published Papers r90221, Russian Presidential Academy of National Economy and Public Administration.
    3. Benati, Luca, 2007. "Drift and breaks in labor productivity," Journal of Economic Dynamics and Control, Elsevier, vol. 31(8), pages 2847-2877, August.
    4. Jamel Jouini, 2009. "Analysis of structural break models based on the evolutionary spectrum: Monte Carlo study and application," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(1), pages 91-110.
    5. Umar, Muhammad & Su, Chi-Wei & Rizvi, Syed Kumail Abbas & Lobonţ, Oana-Ramona, 2021. "Driven by fundamentals or exploded by emotions: Detecting bubbles in oil prices," Energy, Elsevier, vol. 231(C).
    6. Bill Russell & Dooruj Rambaccussing, 2019. "Breaks and the statistical process of inflation: the case of estimating the ‘modern’ long-run Phillips curve," Empirical Economics, Springer, vol. 56(5), pages 1455-1475, May.
    7. Liang Jiang & Xiaohu Wang & Jun Yu, 2014. "On Bias in the Estimation of Structural Break Points," Working Papers 22-2014, Singapore Management University, School of Economics.
    8. Frijns, Bart & Indriawan, Ivan & Otsubo, Yoichi & Tourani-Rad, Alireza, 2019. "The cost of trading during Federal Funds Rate announcements: Evidence from cross-listed stocks," International Review of Economics & Finance, Elsevier, vol. 60(C), pages 176-187.
    9. Felix Pretis & Michael Mann & Robert Kaufmann, 2015. "Testing competing models of the temperature hiatus: assessing the effects of conditioning variables and temporal uncertainties through sample-wide break detection," Climatic Change, Springer, vol. 131(4), pages 705-718, August.
    10. Koo, Bonsoo & Seo, Myung Hwan, 2015. "Structural-break models under mis-specification: Implications for forecasting," Journal of Econometrics, Elsevier, vol. 188(1), pages 166-181.
    11. Jiang, Liang & Wang, Xiaohu & Yu, Jun, 2018. "New distribution theory for the estimation of structural break point in mean," Journal of Econometrics, Elsevier, vol. 205(1), pages 156-176.
    12. Martin T. Bohl & Alexander Pütz & Pierre L. Siklos & Christoph Sulewski, 2018. "Information Transmission under Increasing Political Tension – Evidence for the Berlin Produce Exchange 1887-1896," CQE Working Papers 7618, Center for Quantitative Economics (CQE), University of Muenster.
    13. Laurent Callot & Johannes Tang Kristensen, 2014. "Vector Autoregressions with Parsimoniously Time Varying Parameters and an Application to Monetary Policy," CREATES Research Papers 2014-41, Department of Economics and Business Economics, Aarhus University.
    14. Wang, Shaoping & Cui, Guowei & Li, Kunpeng, 2015. "Factor-augmented regression models with structural change," Economics Letters, Elsevier, vol. 130(C), pages 124-127.
    15. Graham Elliott & Allan Timmermann, 2016. "Economic Forecasting," Economics Books, Princeton University Press, edition 1, number 10740.
    16. Dakpogan, Arnaud & Smit, Eon, 2018. "The effect of electricity losses on GDP in Benin," MPRA Paper 89545, University Library of Munich, Germany.
    17. Raffaella Giacomini & Barbara Rossi, 2010. "Forecast comparisons in unstable environments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 595-620.
    18. Marotta, Giuseppe, 2009. "Structural breaks in the lending interest rate pass-through and the euro," Economic Modelling, Elsevier, vol. 26(1), pages 191-205, January.
    19. Suwastika Naidu & Atishwar Pandaram & Anand Chand, 2017. "A Johansen Cointegration Test for the Relationship between Remittances and Economic Growth of Japan," Modern Applied Science, Canadian Center of Science and Education, vol. 11(10), pages 137-137, October.
    20. Boldea, Otilia & Hall, Alastair R., 2013. "Estimation and inference in unstable nonlinear least squares models," Journal of Econometrics, Elsevier, vol. 172(1), pages 158-167.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:24:y:2005:i:4:p:305-319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.