IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v20y2002i3p191-210.html
   My bibliography  Save this article

Exchange-Rates Forecasting: A Hybrid Algorithm Based on Genetically Optimized Adaptive Neural Networks

Author

Listed:
  • Andreou, Andreas S
  • Georgopoulos, Efstratios F
  • Likothanassis, Spiridon D

Abstract

The use of neural networks trained by a new hybrid algorithm is employed on forecasting the Greek Foreign Exchange-Rate Market. Four major currencies, namely the U.S. Dollar (USD), the Deutsche Mark (DEM), the French Franc (FF) and the British Pound (GBP), versus the Greek Drachma, were used as experimental data. The proposed algorithm combines genetic algorithms and a training method based on the localized Extended Kalman Filter (EKF), in order to evolve the structure and train Multi-Layered Perceptron (MLP) neural networks. The goal of this effort is to predict, as accurately as possible, exchange-rates future behavior. Simulation results show that the method gives highly successful results, while the diversification of the structure between the four currencies has no effect on the performance. Copyright 2002 by Kluwer Academic Publishers

Suggested Citation

  • Andreou, Andreas S & Georgopoulos, Efstratios F & Likothanassis, Spiridon D, 2002. "Exchange-Rates Forecasting: A Hybrid Algorithm Based on Genetically Optimized Adaptive Neural Networks," Computational Economics, Springer;Society for Computational Economics, vol. 20(3), pages 191-210, December.
  • Handle: RePEc:kap:compec:v:20:y:2002:i:3:p:191-210
    as

    Download full text from publisher

    File URL: http://journals.kluweronline.com/issn/0927-7099/contents
    Download Restriction: Access to the full text of the articles in this series is restricted.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Medel, Carlos & Camilleri, Gilmour & Hsu, Hsiang-Ling & Kania, Stefan & Touloumtzoglou, Miltiadis, 2015. "Robustness in Foreign Exchange Rate Forecasting Models: Economics-based Modelling After the Financial Crisis," MPRA Paper 65290, University Library of Munich, Germany.
    2. Fat Codruta Maria & Dezsi Eva, 2011. "Exchange-Rates Forecasting: Exponential Smoothing Techniques And Arima Models," Annals of Faculty of Economics, University of Oradea, Faculty of Economics, vol. 1(1), pages 499-508, July.
    3. Nguyen, Hang T. & Nabney, Ian T., 2010. "Short-term electricity demand and gas price forecasts using wavelet transforms and adaptive models," Energy, Elsevier, vol. 35(9), pages 3674-3685.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:20:y:2002:i:3:p:191-210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.