IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v10y1997i1p47-65.html
   My bibliography  Save this article

A Homotopy Approach to Solving Nonlinear Rational Expectation Problems

Author

Listed:
  • Jensen, Mark J

Abstract

Many numerical methods have been developed in an attempt to find solutions to nonlinear rational expectations models. Because these algorithms are numerical in nature, they rely heavily on computing power and take sizeable cycles to solve. In this paper we present a numerical tool known as homotopy theory that can be applied to these methods. Homotopy theory reduces the computing time associated with an iterative algorithm by using a rational expectation problem with known solutions and transforming it into the problem at hand. If this transformation is performed slowly, homotopy theory also helps the global convergence properties of the numerical algorithm. We apply homotopy theory to Den Haan and Marcet's Parameterized Expectation Approach to show how homotopies improve the computing speed and global convergence properties of this algorithm. Citation Copyright 1997 by Kluwer Academic Publishers.

Suggested Citation

  • Jensen, Mark J, 1997. "A Homotopy Approach to Solving Nonlinear Rational Expectation Problems," Computational Economics, Springer;Society for Computational Economics, vol. 10(1), pages 47-65, February.
  • Handle: RePEc:kap:compec:v:10:y:1997:i:1:p:47-65
    as

    Download full text from publisher

    File URL: http://journals.kluweronline.com/issn/0927-7099/contents
    Download Restriction: Access to the full text of the articles in this series is restricted.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Wouter J. Den Haan & Albert Marcet, 1994. "Accuracy in Simulations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(1), pages 3-17.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Javier J. Pérez, 2004. "A Log-Linear Homotopy Approach to Initialize the Parameterized Expectations Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 24(1), pages 59-75, August.
    2. William A. Barnett & Yi Liu & Haiyang Xu & Mark Jensen, 1996. "The CAPM Risk Adjustment Needed for Exact Aggregation over Financial Assets," Econometrics 9602003, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Atolia, Manoj & Chatterjee, Santanu & Turnovsky, Stephen J., 2010. "How misleading is linearization? Evaluating the dynamics of the neoclassical growth model," Journal of Economic Dynamics and Control, Elsevier, vol. 34(9), pages 1550-1571, September.
    2. Ellison, Martin, 2006. "The learning cost of interest rate reversals," Journal of Monetary Economics, Elsevier, vol. 53(8), pages 1895-1907, November.
    3. Gorostiaga, Arantza, 2003. "Should fiscal policy be different in a non-competitive framework?," Journal of Monetary Economics, Elsevier, vol. 50(6), pages 1311-1331, September.
    4. François Le Grand & Xavier Ragot, 2022. "Managing Inequality Over Business Cycles: Optimal Policies With Heterogeneous Agents And Aggregate Shocks," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(1), pages 511-540, February.
    5. Albert Marcet & David A. Marshall, 1994. "Solving nonlinear rational expectations models by parameterized expectations: convergence to stationary solutions," Working Paper Series, Macroeconomic Issues 94-20, Federal Reserve Bank of Chicago.
    6. Jeremy Berkowitz, 1996. "Generalized spectral estimation," Finance and Economics Discussion Series 96-37, Board of Governors of the Federal Reserve System (U.S.).
    7. Christoffel, Kai & Kilponen, Juha & Jaccard, Ivan, 2011. "Government bond risk premia and the cyclicality of fiscal policy," Working Paper Series 1411, European Central Bank.
    8. Lim, G.C. & McNelis, Paul D., 2008. "Computational Macroeconomics for the Open Economy," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262123061, April.
    9. John Stachurski, 2009. "Economic Dynamics: Theory and Computation," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012774, April.
    10. Bhamra, Harjoat S. & Coeurdacier, Nicolas & Guibaud, Stéphane, 2014. "A dynamic equilibrium model of imperfectly integrated financial markets," Journal of Economic Theory, Elsevier, vol. 154(C), pages 490-542.
    11. William A. Barnett & Yi Liu & Haiyang Xu & Mark Jensen, 1996. "The CAPM Risk Adjustment Needed for Exact Aggregation over Financial Assets," Econometrics 9602003, University Library of Munich, Germany.
    12. Aruoba, S. Boragan & Fernandez-Villaverde, Jesus & Rubio-Ramirez, Juan F., 2006. "Comparing solution methods for dynamic equilibrium economies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2477-2508, December.
    13. Christopher A. Sims & Jinill Kim & Sunghyun Kim, 2003. "Calculating and Using Second Order Accurate Solution of Discrete Time Dynamic Equilibrium Models," Computing in Economics and Finance 2003 162, Society for Computational Economics.
    14. Feigenbaum, James, 2005. "Second-, third-, and higher-order consumption functions: a precautionary tale," Journal of Economic Dynamics and Control, Elsevier, vol. 29(8), pages 1385-1425, August.
    15. Luis M. Viceira, 2001. "Optimal Portfolio Choice for Long‐Horizon Investors with Nontradable Labor Income," Journal of Finance, American Finance Association, vol. 56(2), pages 433-470, April.
    16. Holland, Allison & Scott, Andrew, 1998. "The Determinants of UK Business Cycles," Economic Journal, Royal Economic Society, vol. 108(449), pages 1067-1092, July.
    17. Ashwin, Julian & Beaudry, Paul & Ellison, Martin, 2024. "Neural Network Learning for Nonlinear Economies," CEPR Discussion Papers 19295, C.E.P.R. Discussion Papers.
    18. Stephanie Becker & Lars Grüne & Willi Semmler, 2007. "Comparing accuracy of second-order approximation and dynamic programming," Computational Economics, Springer;Society for Computational Economics, vol. 30(1), pages 65-91, August.
    19. Dario Caldara & Jesus Fernandez-Villaverde & Juan Rubio-Ramirez & Wen Yao, 2012. "Computing DSGE Models with Recursive Preferences and Stochastic Volatility," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 15(2), pages 188-206, April.
    20. Kenneth L. Judd & Lilia Maliar & Serguei Maliar, 2014. "Lower Bounds on Approximation Errors: Testing the Hypothesis That a Numerical Solution Is Accurate?," BYU Macroeconomics and Computational Laboratory Working Paper Series 2014-06, Brigham Young University, Department of Economics, BYU Macroeconomics and Computational Laboratory.

    More about this item

    JEL classification:

    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:10:y:1997:i:1:p:47-65. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.