IDEAS home Printed from https://ideas.repec.org/a/kap/asiaeu/v11y2013i3p265-283.html
   My bibliography  Save this article

Decomposition of embodied exergy flows in manufactured products and implications for carbon tariff policies

Author

Listed:
  • Mei Liao
  • Chao Ma
  • Dongpu Yao
  • Huizheng Liu

Abstract

This article uses the concept of embodied exergy as metrics in designing incentive policy instruments to tackle the inefficiency of energy operations. Based on the second law of thermodynamics and energy’s economic properties as both a private commodity and a public good, it maintains that energy can be measured by separating the useful exergy embodied in a manufactured product from its waste exergy (anergy) as emissions and sunk wastes in a production process. It is rational to benchmark the content of useful exergy embodied in products for any incentive policy design to encourage green production. This article uses trade data between China, Japan and the EU countries to compare the embodied exergy and waste exergy embodied in traded manufactured products. It proposes using a negative value-added tax as an incentive instrument instead of full-scale carbon tariffs to encourage green production and to fence against carbon evasion behaviour. Copyright The Author(s) 2013

Suggested Citation

  • Mei Liao & Chao Ma & Dongpu Yao & Huizheng Liu, 2013. "Decomposition of embodied exergy flows in manufactured products and implications for carbon tariff policies," Asia Europe Journal, Springer, vol. 11(3), pages 265-283, September.
  • Handle: RePEc:kap:asiaeu:v:11:y:2013:i:3:p:265-283
    DOI: 10.1007/s10308-013-0357-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10308-013-0357-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10308-013-0357-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ang, B.W., 1995. "Decomposition methodology in industrial energy demand analysis," Energy, Elsevier, vol. 20(11), pages 1081-1095.
    2. Ang, B. W. & Lee, P. W., 1996. "Decomposition of industrial energy consumption: The energy coefficient approach," Energy Economics, Elsevier, vol. 18(1-2), pages 129-143, April.
    3. Gilles Le Blanc & Mathieu Bordigoni & Alain Hita, 2012. "Role of embodied energy in the European manufacturing industry: Application to short-term impacts of a carbon tax," Post-Print hal-00768525, HAL.
    4. Chen, Z.M. & Chen, G.Q., 2011. "An overview of energy consumption of the globalized world economy," Energy Policy, Elsevier, vol. 39(10), pages 5920-5928, October.
    5. Dincer, Ibrahim, 2002. "The role of exergy in energy policy making," Energy Policy, Elsevier, vol. 30(2), pages 137-149, January.
    6. Tsatsaronis, George, 2007. "Definitions and nomenclature in exergy analysis and exergoeconomics," Energy, Elsevier, vol. 32(4), pages 249-253.
    7. Sébastien Miroudot & Rainer Lanz & Alexandros Ragoussis, 2009. "Trade in Intermediate Goods and Services," OECD Trade Policy Papers 93, OECD Publishing.
    8. Szargut, Jan & Stanek, Wojciech, 2008. "Influence of the pro-ecological tax on the market prices of fuels and electricity," Energy, Elsevier, vol. 33(2), pages 137-143.
    9. Bordigoni, Mathieu & Hita, Alain & Le Blanc, Gilles, 2012. "Role of embodied energy in the European manufacturing industry: Application to short-term impacts of a carbon tax," Energy Policy, Elsevier, vol. 43(C), pages 335-350.
    10. Szargut, J., 2002. "Application of exergy for the determination of the pro-ecological tax replacing the actual personal taxes," Energy, Elsevier, vol. 27(4), pages 379-389.
    11. Nishimura, Kazuhiko & Hondo, Hiroki & Uchiyama, Yohji, 1996. "Derivation of energy-embodiment functions to estimate the embodied energy from the material content," Energy, Elsevier, vol. 21(12), pages 1247-1256.
    12. Sun, J. W., 1998. "Changes in energy consumption and energy intensity: A complete decomposition model," Energy Economics, Elsevier, vol. 20(1), pages 85-100, February.
    13. Greening, Lorna A. & Davis, William B. & Schipper, Lee & Khrushch, Marta, 1997. "Comparison of six decomposition methods: application to aggregate energy intensity for manufacturing in 10 OECD countries," Energy Economics, Elsevier, vol. 19(3), pages 375-390, July.
    14. Moran, Daniel D. & Wackernagel, Mathis C. & Kitzes, Justin A. & Heumann, Benjamin W. & Phan, Doantam & Goldfinger, Steven H., 2009. "Trading spaces: Calculating embodied Ecological Footprints in international trade using a Product Land Use Matrix (PLUM)," Ecological Economics, Elsevier, vol. 68(7), pages 1938-1951, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    2. Usubiaga-Liaño, Arkaitz & Arto, Iñaki & Acosta-Fernández, José, 2021. "Double accounting in energy footprint and related assessments: How common is it and what are the consequences?," Energy, Elsevier, vol. 222(C).
    3. Tian, Xu & Chen, Bin & Geng, Yong & Zhong, Shaozhuo & Gao, Cuixia & Wilson, Jeffrey & Cui, Xiaowei & Dou, Yi, 2019. "Energy footprint pathways of China," Energy, Elsevier, vol. 180(C), pages 330-340.
    4. Bor, Yunchang Jeffrey, 2008. "Consistent multi-level energy efficiency indicators and their policy implications," Energy Economics, Elsevier, vol. 30(5), pages 2401-2419, September.
    5. Cui, Lian-Biao & Peng, Pan & Zhu, Lei, 2015. "Embodied energy, export policy adjustment and China's sustainable development: A multi-regional input-output analysis," Energy, Elsevier, vol. 82(C), pages 457-467.
    6. Xiaopeng Wang & Xiang Chen & Yiman Cheng & Luyao Zhou & Yi Li & Yongliang Yang, 2020. "Factorial Decomposition of the Energy Footprint of the Shaoxing Textile Industry," Energies, MDPI, vol. 13(7), pages 1-13, April.
    7. Cornillie, Jan & Fankhauser, Samuel, 2004. "The energy intensity of transition countries," Energy Economics, Elsevier, vol. 26(3), pages 283-295, May.
    8. Luukkanen, J. & Kaivo-oja, J., 2002. "A comparison of Nordic energy and CO2 intensity dynamics in the years 1960–1997," Energy, Elsevier, vol. 27(2), pages 135-150.
    9. Chen, G.Q. & Wu, X.F., 2017. "Energy overview for globalized world economy: Source, supply chain and sink," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 735-749.
    10. Bortolamedi, Markus, 2015. "Accounting for hidden energy dependency: The impact of energy embodied in traded goods on cross-country energy security assessments," Energy, Elsevier, vol. 93(P2), pages 1361-1372.
    11. Stanek, Wojciech & Czarnowska, Lucyna, 2018. "Thermo-ecological cost – Szargut's proposal on exergy and ecology connection," Energy, Elsevier, vol. 165(PB), pages 1050-1059.
    12. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposition of CO2 emissions change from energy consumption in Brazil: Challenges and policy implications," Energy Policy, Elsevier, vol. 39(3), pages 1495-1504, March.
    13. Marcel Kohler, 2008. "The impact of international trade on changing patterns of energy use in South African industry," Working Papers 088, Economic Research Southern Africa.
    14. Ma, Chunbo, 2014. "A multi-fuel, multi-sector and multi-region approach to index decomposition: An application to China's energy consumption 1995–2010," Energy Economics, Elsevier, vol. 42(C), pages 9-16.
    15. Fernández, Esteban & Fernández, Paula, 2008. "An extension to Sun's decomposition methodology: The Path Based approach," Energy Economics, Elsevier, vol. 30(3), pages 1020-1036, May.
    16. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    17. P. Fernández-González & M. Landajo & M.J. Presno, 2013. "Factors Influencing Changes In Aggregate Energy Consumption. An European Cross-Country Analysis," Regional and Sectoral Economic Studies, Euro-American Association of Economic Development, vol. 13(2), pages 18-30.
    18. Pi-qin Gong & Bao-jun Tang & Yu-chong Xiao & Gao-jie Lin & Jian-yun Liu, 2016. "Research on China export structure adjustment: an embodied carbon perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 129-151, November.
    19. Tol, Richard S.J. & Pacala, Stephen W. & Socolow, Robert H., 2009. "Understanding Long-Term Energy Use and Carbon Dioxide Emissions in the USA," Journal of Policy Modeling, Elsevier, vol. 31(3), pages 425-445, May.
    20. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Tracking European Union CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition. The activity revaluation approach," Energy, Elsevier, vol. 73(C), pages 741-750.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:asiaeu:v:11:y:2013:i:3:p:265-283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.