Forecasting of Crude Oil Prices Using Wavelet Decomposition Based Denoising with ARMA Model
Author
Abstract
Suggested Citation
DOI: 10.1007/s10690-023-09418-7
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Diaz, Elena Maria & Molero, Juan Carlos & Perez de Gracia, Fernando, 2016.
"Oil price volatility and stock returns in the G7 economies,"
Energy Economics, Elsevier, vol. 54(C), pages 417-430.
- Elena MarÃa DÃaz & Juan Carlos Molero & Fernando Pérez de Gracia, 2016. "Oil price volatility and stock returns in the G7 economies," Faculty Working Papers 03/16, School of Economics and Business Administration, University of Navarra.
- Iqbal Thonse Hawaldar & T. M. Rajesha & Lokesha Lokesha & Adel M. Sarea, 2020. "Causal Nexus between the Anamolies in the Crude Oil Price and Stock Market," International Journal of Energy Economics and Policy, Econjournals, vol. 10(3), pages 233-238.
- Mohammadi, Hassan & Su, Lixian, 2010. "International evidence on crude oil price dynamics: Applications of ARIMA-GARCH models," Energy Economics, Elsevier, vol. 32(5), pages 1001-1008, September.
- Antonio Focacci, 2023. "Spillovers between non-commercial traders’ activity and spot prices? Analysis of the financialization mechanism in the crude oil market," China Finance Review International, Emerald Group Publishing Limited, vol. 13(2), pages 157-182, January.
- Bekiros, Stelios D. & Diks, Cees G.H., 2008.
"The relationship between crude oil spot and futures prices: Cointegration, linear and nonlinear causality,"
Energy Economics, Elsevier, vol. 30(5), pages 2673-2685, September.
- Bekiros, S. & Diks, C.G.H., 2007. "The Relationship between Crude Oil Spot and Futures Prices: Cointegration, Linear and Nonlinear Causality," CeNDEF Working Papers 07-11, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
- Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2008. "Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm," Energy Economics, Elsevier, vol. 30(5), pages 2623-2635, September.
- Wang, Lu & Ma, Feng & Niu, Tianjiao & Liang, Chao, 2021. "The importance of extreme shock: Examining the effect of investor sentiment on the crude oil futures market," Energy Economics, Elsevier, vol. 99(C).
- Jayaraman, T.K. & Choong, Chee-Keong, 2009. "Growth and oil price: A study of causal relationships in small Pacific Island countries," Energy Policy, Elsevier, vol. 37(6), pages 2182-2189, June.
- Dai, Peng-Fei & Xiong, Xiong & Zhang, Jin & Zhou, Wei-Xing, 2022.
"The role of global economic policy uncertainty in predicting crude oil futures volatility: Evidence from a two-factor GARCH-MIDAS model,"
Resources Policy, Elsevier, vol. 78(C).
- Peng-Fei Dai & Xiong Xiong & Wei-Xing Zhou, 2020. "The role of global economic policy uncertainty in predicting crude oil futures volatility: Evidence from a two-factor GARCH-MIDAS model," Papers 2007.12838, arXiv.org.
- Pindyck, Robert S, 1978. "The Optimal Exploration and Production of Nonrenewable Resources," Journal of Political Economy, University of Chicago Press, vol. 86(5), pages 841-861, October.
- Kaufmann, Robert K. & Ullman, Ben, 2009. "Oil prices, speculation, and fundamentals: Interpreting causal relations among spot and futures prices," Energy Economics, Elsevier, vol. 31(4), pages 550-558, July.
- Gencay, Ramazan & Selcuk, Faruk & Whitcher, Brandon, 2005. "Multiscale systematic risk," Journal of International Money and Finance, Elsevier, vol. 24(1), pages 55-70, February.
- Chul-Yong Lee & Sung-Yoon Huh, 2017. "Forecasting Long-Term Crude Oil Prices Using a Bayesian Model with Informative Priors," Sustainability, MDPI, vol. 9(2), pages 1-15, January.
- Dai, Peng-Fei & Xiong, Xiong & Duc Huynh, Toan Luu & Wang, Jiqiang, 2022. "The impact of economic policy uncertainties on the volatility of European carbon market," Journal of Commodity Markets, Elsevier, vol. 26(C).
- Sharif, Arshian & Aloui, Chaker & Yarovaya, Larisa, 2020. "COVID-19 pandemic, oil prices, stock market, geopolitical risk and policy uncertainty nexus in the US economy: Fresh evidence from the wavelet-based approach," International Review of Financial Analysis, Elsevier, vol. 70(C).
- Sepehr Ramyar & Farhad Kianfar, 2019. "Forecasting Crude Oil Prices: A Comparison Between Artificial Neural Networks and Vector Autoregressive Models," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 743-761, February.
- Lutz Kilian & Daniel P. Murphy, 2014.
"The Role Of Inventories And Speculative Trading In The Global Market For Crude Oil,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(3), pages 454-478, April.
- Kilian, Lutz & Murphy, Daniel, 2010. "The Role of Inventories and Speculative Trading in the Global Market for Crude Oil," CEPR Discussion Papers 7753, C.E.P.R. Discussion Papers.
- Shahrestani, Parnia & Rafei, Meysam, 2020. "The impact of oil price shocks on Tehran Stock Exchange returns: Application of the Markov switching vector autoregressive models," Resources Policy, Elsevier, vol. 65(C).
- Morana, Claudio, 2001. "A semiparametric approach to short-term oil price forecasting," Energy Economics, Elsevier, vol. 23(3), pages 325-338, May.
- Zhang, Hao & Cai, Guixin & Yang, Dongxiao, 2020. "The impact of oil price shocks on clean energy stocks: Fresh evidence from multi-scale perspective," Energy, Elsevier, vol. 196(C).
- Gong, Xu & Lin, Boqiang, 2017. "Forecasting the good and bad uncertainties of crude oil prices using a HAR framework," Energy Economics, Elsevier, vol. 67(C), pages 315-327.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
- Cheng, Fangzheng & Fan, Tijun & Fan, Dandan & Li, Shanling, 2018. "The prediction of oil price turning points with log-periodic power law and multi-population genetic algorithm," Energy Economics, Elsevier, vol. 72(C), pages 341-355.
- Chul-Yong Lee & Sung-Yoon Huh, 2017. "Forecasting Long-Term Crude Oil Prices Using a Bayesian Model with Informative Priors," Sustainability, MDPI, vol. 9(2), pages 1-15, January.
- Chun, Dohyun & Cho, Hoon & Kim, Jihun, 2019. "Crude oil price shocks and hedging performance: A comparison of volatility models," Energy Economics, Elsevier, vol. 81(C), pages 1132-1147.
- Meng, Fanyi & Liu, Li, 2019. "Analyzing the economic sources of oil price volatility: An out-of-sample perspective," Energy, Elsevier, vol. 177(C), pages 476-486.
- Nademi, Arash & Nademi, Younes, 2018. "Forecasting crude oil prices by a semiparametric Markov switching model: OPEC, WTI, and Brent cases," Energy Economics, Elsevier, vol. 74(C), pages 757-766.
- Piersanti, Giovanni & Piersanti, Mirko & Cicone, Antonio & Canofari, Paolo & Di Domizio, Marco, 2020. "An inquiry into the structure and dynamics of crude oil price using the fast iterative filtering algorithm," Energy Economics, Elsevier, vol. 92(C).
- Gong, Xu & Guan, Keqin & Chen, Liqing & Liu, Tangyong & Fu, Chengbo, 2021. "What drives oil prices? — A Markov switching VAR approach," Resources Policy, Elsevier, vol. 74(C).
- Junior, Peterson Owusu & Tiwari, Aviral Kumar & Padhan, Hemachandra & Alagidede, Imhotep, 2020. "Analysis of EEMD-based quantile-in-quantile approach on spot- futures prices of energy and precious metals in India," Resources Policy, Elsevier, vol. 68(C).
- Wang, Minggang & Zhao, Longfeng & Du, Ruijin & Wang, Chao & Chen, Lin & Tian, Lixin & Eugene Stanley, H., 2018. "A novel hybrid method of forecasting crude oil prices using complex network science and artificial intelligence algorithms," Applied Energy, Elsevier, vol. 220(C), pages 480-495.
- Taiyong Li & Zhenda Hu & Yanchi Jia & Jiang Wu & Yingrui Zhou, 2018. "Forecasting Crude Oil Prices Using Ensemble Empirical Mode Decomposition and Sparse Bayesian Learning," Energies, MDPI, vol. 11(7), pages 1-23, July.
- Yingrui Zhou & Taiyong Li & Jiayi Shi & Zijie Qian, 2019. "A CEEMDAN and XGBOOST-Based Approach to Forecast Crude Oil Prices," Complexity, Hindawi, vol. 2019, pages 1-15, February.
- Manel Hamdi & Chaker Aloui, 2015. "Forecasting Crude Oil Price Using Artificial Neural Networks: A Literature Survey," Economics Bulletin, AccessEcon, vol. 35(2), pages 1339-1359.
- Kim, Myung Suk, 2018. "Impacts of supply and demand factors on declining oil prices," Energy, Elsevier, vol. 155(C), pages 1059-1065.
- Jakobsson, Kristofer & Söderbergh, Bengt & Snowden, Simon & Li, Chuan-Zhong & Aleklett, Kjell, 2012. "Oil exploration and perceptions of scarcity: The fallacy of early success," Energy Economics, Elsevier, vol. 34(4), pages 1226-1233.
- Cheng, Fangzheng & Li, Tian & Wei, Yi-ming & Fan, Tijun, 2019. "The VEC-NAR model for short-term forecasting of oil prices," Energy Economics, Elsevier, vol. 78(C), pages 656-667.
- Taiyong Li & Min Zhou & Chaoqi Guo & Min Luo & Jiang Wu & Fan Pan & Quanyi Tao & Ting He, 2016. "Forecasting Crude Oil Price Using EEMD and RVM with Adaptive PSO-Based Kernels," Energies, MDPI, vol. 9(12), pages 1-21, December.
- Drachal, Krzysztof, 2018. "Comparison between Bayesian and information-theoretic model averaging: Fossil fuels prices example," Energy Economics, Elsevier, vol. 74(C), pages 208-251.
- Li, Xuerong & Shang, Wei & Wang, Shouyang, 2019. "Text-based crude oil price forecasting: A deep learning approach," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1548-1560.
- Apostolakis, George N. & Floros, Christos & Gkillas, Konstantinos & Wohar, Mark, 2024. "Volatility spillovers across the spot and futures oil markets after news announcements," The North American Journal of Economics and Finance, Elsevier, vol. 69(PA).
More about this item
Keywords
Wavelet; Forecasting; ARMA; Crude oil; Denoising;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:apfinm:v:31:y:2024:i:2:d:10.1007_s10690-023-09418-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.