IDEAS home Printed from https://ideas.repec.org/a/kap/apfinm/v21y2014i1p35-66.html
   My bibliography  Save this article

Expected Log-Utility Maximization Under Incomplete Information and with Cox-Process Observations

Author

Listed:
  • Kazufumi Fujimoto
  • Hideo Nagai
  • Wolfgang Runggaldier

Abstract

We consider the portfolio optimization problem for the criterion of maximization of expected terminal log-utility. The underlying market model is a regime-switching diffusion model where the regime is determined by an unobservable factor process forming a finite state Markov process. The main novelty is due to the fact that prices are observed and the portfolio is rebalanced only at random times corresponding to a Cox process where the intensity is driven by the unobserved Markovian factor process as well. This leads to a more realistic modeling for many practical situations, like in markets with liquidity restrictions; on the other hand it considerably complicates the problem to the point that traditional methodologies cannot be directly applied. The approach presented here is specific to the log-utility. For power utilities a different approach is presented in the companion paper (Fujimoto et al. in Appl Math Optim 67(1):33–72, 2013 ). Copyright Springer Japan 2014

Suggested Citation

  • Kazufumi Fujimoto & Hideo Nagai & Wolfgang Runggaldier, 2014. "Expected Log-Utility Maximization Under Incomplete Information and with Cox-Process Observations," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 21(1), pages 35-66, March.
  • Handle: RePEc:kap:apfinm:v:21:y:2014:i:1:p:35-66
    DOI: 10.1007/s10690-013-9176-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10690-013-9176-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10690-013-9176-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koichi Matsumoto, 2006. "Optimal portfolio of low liquid assets with a log-utility function," Finance and Stochastics, Springer, vol. 10(1), pages 121-145, January.
    2. Tomas Björk & Mark Davis & Camilla Landén, 2010. "Optimal investment under partial information," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(2), pages 371-399, April.
    3. Rüdiger Frey & Wolfgang J. Runggaldier, 2001. "A Nonlinear Filtering Approach To Volatility Estimation With A View Towards High Frequency Data," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 4(02), pages 199-210.
    4. Eckhard Platen & Wolfgang Runggaldier, 2007. "A Benchmark Approach to Portfolio Optimization under Partial Information," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 14(1), pages 25-43, March.
    5. Huyên Pham & Peter Tankov, 2008. "A Model Of Optimal Consumption Under Liquidity Risk With Random Trading Times," Mathematical Finance, Wiley Blackwell, vol. 18(4), pages 613-627, October.
    6. Jakv{s}a Cvitani'c & Robert Liptser & Boris Rozovskii, 2006. "A filtering approach to tracking volatility from prices observed at random times," Papers math/0612212, arXiv.org.
    7. Hideo Nagai, 2004. "Risky Fraction Processes and Problems with Transaction Costs," World Scientific Book Chapters, in: Jiro Akahori & Shigeyoshi Ogawa & Shinzo Watanabe (ed.), Stochastic Processes And Applications To Mathematical Finance, chapter 13, pages 271-288, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Agostino Capponi & José Figueroa-López & Andrea Pascucci, 2015. "Dynamic credit investment in partially observed markets," Finance and Stochastics, Springer, vol. 19(4), pages 891-939, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Ludkovski & Hyekyung Min, 2010. "Illiquidity Effects in Optimal Consumption-Investment Problems," Papers 1004.1489, arXiv.org, revised Sep 2010.
    2. Jin Hyuk Choi & Tae Ung Gang, 2021. "Optimal investment in illiquid market with search frictions and transaction costs," Papers 2101.09936, arXiv.org, revised Aug 2021.
    3. Soren Christensen & Marc Wittlinger, 2012. "Optimal relaxed portfolio strategies for growth rate maximization problems with transaction costs," Papers 1209.0305, arXiv.org, revised Jun 2013.
    4. Paul Gassiat & Huyen Pham & Mihai Sirbu, 2009. "Optimal investment on finite horizon with random discrete order flow in illiquid markets," Papers 0907.2203, arXiv.org.
    5. Huyên Pham & Peter Tankov, 2008. "A Model Of Optimal Consumption Under Liquidity Risk With Random Trading Times," Mathematical Finance, Wiley Blackwell, vol. 18(4), pages 613-627, October.
    6. Paul Gassiat & Huyên Pham & Mihai Sîrbu, 2012. "Optimal Investment On Finite Horizon With Random Discrete Order Flow In Illiquid Markets," World Scientific Book Chapters, in: Matheus R Grasselli & Lane P Hughston (ed.), Finance at Fields, chapter 15, pages 349-372, World Scientific Publishing Co. Pte. Ltd..
    7. Salvatore Federico & Paul Gassiat & Fausto Gozzi, 2017. "Impact Of Time Illiquidity In A Mixed Market Without Full Observation," Mathematical Finance, Wiley Blackwell, vol. 27(2), pages 401-437, April.
    8. Camilla Damian & Rudiger Frey, 2023. "Detecting Rough Volatility: A Filtering Approach," Papers 2302.12612, arXiv.org.
    9. Paul Gassiat & Huyên Pham & Mihai Sîrbu, 2011. "Optimal Investment On Finite Horizon With Random Discrete Order Flow In Illiquid Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 17-40.
    10. Castellano, Rosella & Cerqueti, Roy, 2014. "Mean–Variance portfolio selection in presence of infrequently traded stocks," European Journal of Operational Research, Elsevier, vol. 234(2), pages 442-449.
    11. Paul Gassiat & Fausto Gozzi & Huyen Pham, 2011. "Investment/consumption problem in illiquid markets with regimes switching," Working Papers hal-00610214, HAL.
    12. Salvatore Federico & Paul Gassiat, 2014. "Viscosity Characterization of the Value Function of an Investment-Consumption Problem in Presence of an Illiquid Asset," Journal of Optimization Theory and Applications, Springer, vol. 160(3), pages 966-991, March.
    13. Jie Xiong & Yong Zeng, 2011. "A branching particle approximation to a filtering micromovement model of asset price," Statistical Inference for Stochastic Processes, Springer, vol. 14(2), pages 111-140, May.
    14. Tae Ung Gang & Jin Hyuk Choi, 2024. "Unified Asymptotics For Investment Under Illiquidity: Transaction Costs And Search Frictions," Papers 2407.13547, arXiv.org.
    15. Giorgia Callegaro & Giovanni Masi & Wolfgang Runggaldier, 2006. "Portfolio Optimization in Discontinuous Markets under Incomplete Information," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 13(4), pages 373-394, December.
    16. Elisa Alòs & Maria Elvira Mancino & Tai-Ho Wang, 2019. "Volatility and volatility-linked derivatives: estimation, modeling, and pricing," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 321-349, December.
    17. Yuki SHIGETA, 2022. "A Continuous-Time Utility Maximization Problem with Borrowing Constraints in Macroeconomic Heterogeneous Agent Models:A Case of Regular Controls under Markov Chain Uncertainty," Discussion papers e-22-009, Graduate School of Economics , Kyoto University.
    18. Andrew Papanicolaou, 2018. "Backward SDEs for Control with Partial Information," Papers 1807.08222, arXiv.org.
    19. Palczewski, Jan & Poulsen, Rolf & Schenk-Hoppé, Klaus Reiner & Wang, Huamao, 2015. "Dynamic portfolio optimization with transaction costs and state-dependent drift," European Journal of Operational Research, Elsevier, vol. 243(3), pages 921-931.
    20. Alessandra Cretarola & Fausto Gozzi & Huyên Pham & Peter Tankov, 2011. "Optimal consumption policies in illiquid markets," Finance and Stochastics, Springer, vol. 15(1), pages 85-115, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:apfinm:v:21:y:2014:i:1:p:35-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.