IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v063i05.html
   My bibliography  Save this article

plotKML: Scientific Visualization of Spatio-Temporal Data

Author

Listed:
  • Hengl, Tomislav
  • Roudier, Pierre
  • Beaudette, Dylan
  • Pebesma, Edzer

Abstract

plotKML is an R package that provides methods for writing the most common R spatial classes into KML files. It builds up on the existing XML parsing functionality (XML package), and provides similar plotting functionality as the lattice package. Its main objective is to provide a simple interface to generate KML files with a small number of arguments, and allows users to visually explore spatio-temporal data available in R: points, polygons, gridded maps, trajectory-type data, vertical profiles, ground photographs, time series vector objects or raster images, along with the results of spatial analysis such as geostatistical mapping, spatial simulations of vector and gridded objects, optimized sampling designs, species distribution models and similar. A generic plotKML() function automatically determines the parsing order and visualizes data directly from R; lower level functions can be combined to allow for new user-created visualization templates. In comparison to other packages writing KML, plotKML seems to be more object oriented, it links more closely to the existing R classes for spatio-temporal data (sp, spacetime and raster packages) than the alternatives, and provides users with the possibility to create their own templates.

Suggested Citation

  • Hengl, Tomislav & Roudier, Pierre & Beaudette, Dylan & Pebesma, Edzer, 2015. "plotKML: Scientific Visualization of Spatio-Temporal Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i05).
  • Handle: RePEc:jss:jstsof:v:063:i05
    DOI: http://hdl.handle.net/10.18637/jss.v063.i05
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v063i05/v63i05.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v063i05/plotKML_0.5-0.tar.gz
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v063i05/v63i05.R
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v063.i05?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Grothendieck, Gabor, 2008. "lattice: Multivariate Data Visualization with R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 25(b02).
    2. Pebesma, Edzer, 2012. "spacetime: Spatio-Temporal Data in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 51(i07).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pebesma, Edzer & Bivand, Roger & Ribeiro, Paulo Justiniano, 2015. "Software for Spatial Statistics," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i01).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariana Oliveira & Luís Torgo & Vítor Santos Costa, 2021. "Evaluation Procedures for Forecasting with Spatiotemporal Data," Mathematics, MDPI, vol. 9(6), pages 1-27, March.
    2. Bakar, Khandoker Shuvo & Sahu, Sujit K., 2015. "spTimer: Spatio-Temporal Bayesian Modeling Using R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i15).
    3. Lixin Li & Xiaolu Zhou & Marc Kalo & Reinhard Piltner, 2016. "Spatiotemporal Interpolation Methods for the Application of Estimating Population Exposure to Fine Particulate Matter in the Contiguous U.S. and a Real-Time Web Application," IJERPH, MDPI, vol. 13(8), pages 1-20, July.
    4. Taylor, Benjamin M. & Davies, Tilman M. & Rowlingson, Barry S. & Diggle, Peter J., 2013. "lgcp: An R Package for Inference with Spatial and Spatio-Temporal Log-Gaussian Cox Processes," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 52(i04).
    5. Roger S. Bivand, 2021. "Progress in the R ecosystem for representing and handling spatial data," Journal of Geographical Systems, Springer, vol. 23(4), pages 515-546, October.
    6. Hutniczak, Barbara & Münch, Angela, 2018. "Fishermen's location choice under spatio-temporal update of expectations," Journal of choice modelling, Elsevier, vol. 28(C), pages 124-136.
    7. de Iaco, Sandra, 2017. "The cgeostat Software for Analyzing Complex-Valued Random Fields," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 79(i05).
    8. Meyer, Sebastian & Held, Leonhard & Höhle, Michael, 2017. "Spatio-Temporal Analysis of Epidemic Phenomena Using the R Package surveillance," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 77(i11).
    9. Feras Saad & Jacob Burnim & Colin Carroll & Brian Patton & Urs Köster & Rif A. Saurous & Matthew Hoffman, 2024. "Scalable spatiotemporal prediction with Bayesian neural fields," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    10. Pebesma, Edzer & Bivand, Roger & Ribeiro, Paulo Justiniano, 2015. "Software for Spatial Statistics," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i01).
    11. Martínez-López, Javier & Martínez-Fernández, Julia & Naimi, Babak & Carreño, María F. & Esteve, Miguel A., 2015. "An open-source spatio-dynamic wetland model of plant community responses to hydrological pressures," Ecological Modelling, Elsevier, vol. 306(C), pages 326-333.
    12. Joseph Acquah & Francis Benyah & Jerry S. Y. Kuma, 2019. "Regularisation Technique for a Distributed Parameter Identification Problem," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 11(1), pages 64-75, February.
    13. Gabriel, Edith & Rowlingson, Barry S. & Diggle, Peter J., 2013. "stpp: An R Package for Plotting, Simulating and Analyzing Spatio-Temporal Point Patterns," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 53(i02).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:063:i05. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.