IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v047i06.html
   My bibliography  Save this article

A Greedy Algorithm for Unimodal Kernel Density Estimation by Data Sharpening

Author

Listed:
  • Wolters, Mark A.

Abstract

We consider the problem of nonparametric density estimation where estimates are constrained to be unimodal. Though several methods have been proposed to achieve this end, each of them has its own drawbacks and none of them have readily-available computer codes. The approach of Braun and Hall (2001), where a kernel density estimator is modified by data sharpening, is one of the most promising options, but optimization difficulties make it hard to use in practice. This paper presents a new algorithm and MATLAB code for finding good unimodal density estimates under the Braun and Hall scheme. The algorithm uses a greedy, feasibility-preserving strategy to ensure that it always returns a unimodal solution. Compared to the incumbent method of optimization, the greedy method is easier to use, runs faster, and produces solutions of comparable quality. It can also be extended to the bivariate case.

Suggested Citation

  • Wolters, Mark A., 2012. "A Greedy Algorithm for Unimodal Kernel Density Estimation by Data Sharpening," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 47(i06).
  • Handle: RePEc:jss:jstsof:v:047:i06
    DOI: http://hdl.handle.net/10.18637/jss.v047.i06
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v047i06/v47i06.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v047i06/v47i06-supplements.zip
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v047.i06?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hassan Doosti & Peter Hall, 2016. "Making a non-parametric density estimator more attractive, and more accurate, by data perturbation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 445-462, March.
    2. Turnbull, Bradley C. & Ghosh, Sujit K., 2014. "Unimodal density estimation using Bernstein polynomials," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 13-29.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:047:i06. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.