IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v041i05.html
   My bibliography  Save this article

State Space Modeling Using SsfPack in S+FinMetrics 3.0

Author

Listed:
  • Zivot, Eric W.

Abstract

This paper presents two illustrations of state space modeling in S-PLUS using the SsfPack 3.0 routines implemented in S+FinMetrics 3.0. The state space modeling functions in S+FinMetrics/SsfPack are extremely flexible and powerful and can be used for a wide variety of linear Gaussian state space models and for some non-linear and non-Gaussian state space models.

Suggested Citation

  • Zivot, Eric W., 2011. "State Space Modeling Using SsfPack in S+FinMetrics 3.0," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 41(i05).
  • Handle: RePEc:jss:jstsof:v:041:i05
    DOI: http://hdl.handle.net/10.18637/jss.v041.i05
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v041i05/v41i05.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v041i05/v41i05.ssc
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v041i05/v41i05-data.zip
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v041.i05?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kim, Chang-Jin, 1994. "Dynamic linear models with Markov-switching," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 1-22.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    2. Shively, Gerald E., 2001. "Price thresholds, price volatility, and the private costs of investment in a developing country grain market," Economic Modelling, Elsevier, vol. 18(3), pages 399-414, August.
    3. Perron, Pierre & Wada, Tatsuma, 2016. "Measuring business cycles with structural breaks and outliers: Applications to international data," Research in Economics, Elsevier, vol. 70(2), pages 281-303.
    4. Heidari , Hassan & Refah-Kahriz, Arash & Hashemi Berenjabadi, Nayyer, 2018. "Dynamic Relationship between Macroeconomic Variables and Stock Return Volatility in Tehran Stock Exchange: Multivariate MS ARMA GARCH Approach," Quarterly Journal of Applied Theories of Economics, Faculty of Economics, Management and Business, University of Tabriz, vol. 5(2), pages 223-250, August.
    5. Carol Alexander & Anca Dimitriu, 2003. "Equity Indexing: Conitegration and Stock Price Dispersion: A Regime Switiching Approach to market Efficiency," ICMA Centre Discussion Papers in Finance icma-dp2003-02, Henley Business School, University of Reading.
    6. David Bolder & Shudan Liu, 2007. "Examining Simple Joint Macroeconomic and Term-Structure Models: A Practitioner's Perspective," Staff Working Papers 07-49, Bank of Canada.
    7. Alain Monfort & Olivier Féron, 2012. "Joint econometric modeling of spot electricity prices, forwards and options," Review of Derivatives Research, Springer, vol. 15(3), pages 217-256, October.
    8. Gary Koop & Dimitris Korobilis, 2012. "Forecasting Inflation Using Dynamic Model Averaging," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(3), pages 867-886, August.
    9. Moerman, G.A., 2001. "Unpredictable After All? A short note on exchange rate predictability," ERIM Report Series Research in Management ERS-2001-29-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    10. Carol Alexander & Anca Dimitriu, 2005. "Indexing, cointegration and equity market regimes," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 10(3), pages 213-231.
    11. Marie Bessec, 2019. "Revisiting the transitional dynamics of business cycle phases with mixed-frequency data," Econometric Reviews, Taylor & Francis Journals, vol. 38(7), pages 711-732, August.
    12. Chauvet, Marcelle & Potter, Simon, 2001. "Nonlinear Risk," Macroeconomic Dynamics, Cambridge University Press, vol. 5(4), pages 621-646, September.
    13. Yip, Pick Schen & Brooks, Robert & Do, Hung Xuan & Nguyen, Duc Khuong, 2020. "Dynamic volatility spillover effects between oil and agricultural products," International Review of Financial Analysis, Elsevier, vol. 69(C).
    14. Vassilios Babalos & Mehmet Balcilar & Rangan Gupta, 2014. "Revisiting Herding Behavior in REITs: A Regime-Switching Approach," Working Papers 201448, University of Pretoria, Department of Economics.
    15. Mehmet Pasaogullari & Simeon Tsonevy, 2011. "The term structure of inflation compensation in the nominal yield curve," Working Papers (Old Series) 1133, Federal Reserve Bank of Cleveland.
    16. Theobald, Thomas, 2013. "Markov Switching with Endogenous Number of Regimes and Leading Indicators in a Real-Time Business Cycle Forecast," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79911, Verein für Socialpolitik / German Economic Association.
    17. Carol Alexander & Anca Dimitriu, 2005. "Detecting Switching Strategies in Equity Hedge Funds," ICMA Centre Discussion Papers in Finance icma-dp2005-07, Henley Business School, University of Reading.
    18. Randolph & Xiao Qin & Tan Gee Kwang, 2004. "Unit Root Tests with Markov-Switching," Econometric Society 2004 Australasian Meetings 145, Econometric Society.
    19. Dmitry Kulikov, 2012. "Testing for Rational Speculative Bubbles on the Estonian Stock Market," Research in Economics and Business: Central and Eastern Europe, Tallinn School of Economics and Business Administration, Tallinn University of Technology, vol. 4(1).
    20. Kahn, James A. & Rich, Robert W., 2007. "Tracking the new economy: Using growth theory to detect changes in trend productivity," Journal of Monetary Economics, Elsevier, vol. 54(6), pages 1670-1701, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:041:i05. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.