IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v029i09.html
   My bibliography  Save this article

MIDAS: A SAS Macro for Multiple Imputation Using Distance-Aided Selection of Donors

Author

Listed:
  • Siddique, Juned
  • Harel, Ofer

Abstract

In this paper we describe MIDAS: a SAS macro for multiple imputation using distance aided selection of donors which implements an iterative predictive mean matching hot-deck for imputing missing data. This is a flexible multiple imputation approach that can handle data in a variety of formats: continuous, ordinal, and scaled. Because the imputation models are implicit, it is not necessary to specify a parametric distribution for each variable to be imputed. MIDAS also allows the user to address the sensitivity of their inferences to different assumptions concerning the missing data mechanism. An example using MIDAS to impute missing data is presented and MIDAS is compared to existing missing data software.

Suggested Citation

  • Siddique, Juned & Harel, Ofer, 2009. "MIDAS: A SAS Macro for Multiple Imputation Using Distance-Aided Selection of Donors," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 29(i09).
  • Handle: RePEc:jss:jstsof:v:029:i09
    DOI: http://hdl.handle.net/10.18637/jss.v029.i09
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v029i09/v29i09.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v029i09/MIDAS.sas.zip
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v029i09/v29i09.sas.zip
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v029i09/v29i09-kid-data.sas.zip
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v029i09/v29i09-kid-imputation.sas.zip
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v029.i09?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Horton, Nicholas J. & Kleinman, Ken P., 2007. "Much Ado About Nothing: A Comparison of Missing Data Methods and Software to Fit Incomplete Data Regression Models," The American Statistician, American Statistical Association, vol. 61, pages 79-90, February.
    2. Patrick Royston, 2005. "Multiple imputation of missing values: Update of ice," Stata Journal, StataCorp LP, vol. 5(4), pages 527-536, December.
    3. Little, Roderick J A, 1988. "Missing-Data Adjustments in Large Surveys," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(3), pages 287-296, July.
    4. Kobi Abayomi & Andrew Gelman & Marc Levy, 2008. "Diagnostics for multivariate imputations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 57(3), pages 273-291, June.
    5. Schenker, Nathaniel & Taylor, Jeremy M. G., 1996. "Partially parametric techniques for multiple imputation," Computational Statistics & Data Analysis, Elsevier, vol. 22(4), pages 425-446, August.
    6. Honaker, James & King, Gary & Blackwell, Matthew, 2011. "Amelia II: A Program for Missing Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i07).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sieds, 2012. "Complete Volume LXVI n.1 2012," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - The Italian Journal of Economic, Demographic and Statistical Studies, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 66(1), pages 1-296.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:jss:jstsof:29:i09 is not listed on IDEAS
    2. Gerko Vink & Laurence E. Frank & Jeroen Pannekoek & Stef Buuren, 2014. "Predictive mean matching imputation of semicontinuous variables," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 68(1), pages 61-90, February.
    3. Jörg Drechsler, 2011. "Multiple imputation in practice—a case study using a complex German establishment survey," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(1), pages 1-26, March.
    4. Martin, Eisele & Zhu, Junyi, 2013. "Multiple imputation in a complex household survey - the German Panel on Household Finances (PHF): challenges and solutions," MPRA Paper 57666, University Library of Munich, Germany.
    5. Kilic, Talip & Zezza, Alberto & Carletto, Calogero & Savastano, Sara, 2017. "Missing(ness) in Action: Selectivity Bias in GPS-Based Land Area Measurements," World Development, Elsevier, vol. 92(C), pages 143-157.
    6. Jonathan Hambur & Gianni La Cava, 2018. "Do Interest Rates Affect Business Investment? Evidence from Australian Company-level Data," RBA Research Discussion Papers rdp2018-05, Reserve Bank of Australia.
    7. Fumagalli, Laura & Sala, Emanuela, 2011. "The total survey error paradigm and pre-election polls: the case of the 2006 Italian general elections," ISER Working Paper Series 2011-29, Institute for Social and Economic Research.
    8. Roman Matkovskyy, 2016. "A comparison of pre- and post-crisis efficiency of OECD countries: evidence from a model with temporal heterogeneity in time and unobservable individual effect," European Journal of Comparative Economics, Cattaneo University (LIUC), vol. 13(2), pages 135-167, December.
    9. Ahmad R. Alsaber & Jiazhu Pan & Adeeba Al-Hurban, 2021. "Handling Complex Missing Data Using Random Forest Approach for an Air Quality Monitoring Dataset: A Case Study of Kuwait Environmental Data (2012 to 2018)," IJERPH, MDPI, vol. 18(3), pages 1-25, February.
    10. Kristian Kleinke & Mark Stemmler & Jost Reinecke & Friedrich Lösel, 2011. "Efficient ways to impute incomplete panel data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(4), pages 351-373, December.
    11. Kristian Kleinke, 2017. "Multiple Imputation Under Violated Distributional Assumptions: A Systematic Evaluation of the Assumed Robustness of Predictive Mean Matching," Journal of Educational and Behavioral Statistics, , vol. 42(4), pages 371-404, August.
    12. Rebecca R. Andridge & Roderick J. A. Little, 2010. "A Review of Hot Deck Imputation for Survey Non‐response," International Statistical Review, International Statistical Institute, vol. 78(1), pages 40-64, April.
    13. Gerko Vink & Stef van Buuren, 2013. "Multiple Imputation of Squared Terms," Sociological Methods & Research, , vol. 42(4), pages 598-607, November.
    14. Siddique, Juned & Belin, Thomas R., 2008. "Using an Approximate Bayesian Bootstrap to multiply impute nonignorable missing data," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 405-415, December.
    15. Fulvio Castellacci & José Miguel Natera, 2011. "A new panel dataset for cross-country analyses of national systems, growth and development (CANA)," Working Papers del Instituto Complutense de Estudios Internacionales 1105, Universidad Complutense de Madrid, Instituto Complutense de Estudios Internacionales.
    16. Robert J. Batt & Christian Terwiesch, 2015. "Waiting Patiently: An Empirical Study of Queue Abandonment in an Emergency Department," Management Science, INFORMS, vol. 61(1), pages 39-59, January.
    17. Gianluca Gazzola & Myong K. Jeong, 2021. "Support vector regression for polyhedral and missing data," Annals of Operations Research, Springer, vol. 303(1), pages 483-506, August.
    18. Kristian Kleinke & Jost Reinecke, 2013. "Multiple imputation of incomplete zero-inflated count data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(3), pages 311-336, August.
    19. R Florez-Lopez, 2010. "Effects of missing data in credit risk scoring. A comparative analysis of methods to achieve robustness in the absence of sufficient data," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(3), pages 486-501, March.
    20. Antonio Zinilli, 2021. "Imputation methods for estimating public R&D funding: evidence from longitudinal data," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(2), pages 707-729, April.
    21. Patrick M. Joyce & Donald Malec & Roderick J. A. Little & Aaron Gilary & Alfredo Navarro & Mark E. Asiala, 2014. "Statistical Modeling Methodology for the Voting Rights Act Section 203 Language Assistance Determinations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 36-47, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:029:i09. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.