IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v028i03.html
   My bibliography  Save this article

lawstat: An R Package for Law, Public Policy and Biostatistics

Author

Listed:
  • Hui, Wallace
  • Gel, Yulia R.
  • Gastwirth, Joseph L.

Abstract

We present a new R software package lawstat that contains statistical tests and procedures that are utilized in various litigations on securities law, antitrust law, equal employment and discrimination as well as in public policy and biostatistics. Along with the well known tests such as the Bartels test, runs test, tests of homogeneity of several sample proportions, the Brunner-Munzel tests, the Lorenz curve, the Cochran-Mantel-Haenszel test and others, the package contains new distribution-free robust tests for symmetry, robust tests for normality that are more sensitive to heavy-tailed departures, measures of relative variability, Levene-type tests against trends in variances etc. All implemented tests and methods are illustrated by simulations and real-life examples from legal cases, economics and biostatistics. Although the package is called lawstat, it presents implementation and discussion of statistical procedures and tests that are also employed in a variety of other applications, e.g., biostatistics, environmental studies, social sciences and others, in other words, all applications utilizing statistical data analysis. Hence, name of the package should not be considered as a restriction to legal statistics. The package will be useful to applied statisticians and "quantitatively alert practitioners" of other subjects as well as an asset in teaching statistical courses.

Suggested Citation

  • Hui, Wallace & Gel, Yulia R. & Gastwirth, Joseph L., 2008. "lawstat: An R Package for Law, Public Policy and Biostatistics," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i03).
  • Handle: RePEc:jss:jstsof:v:028:i03
    DOI: http://hdl.handle.net/10.18637/jss.v028.i03
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v028i03/v28i03.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v028i03/lawstat_2.2.tar.gz
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v028i03/v28i03.R
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v028i03/Merck.dat
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v028.i03?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Poitras, Geoffrey, 2006. "More on the correct use of omnibus tests for normality," Economics Letters, Elsevier, vol. 90(3), pages 304-309, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. I. Parra-Frutos, 2013. "Testing homogeneity of variances with unequal sample sizes," Computational Statistics, Springer, vol. 28(3), pages 1269-1297, June.
    2. Aiko Sekita & Hiroshi Kawasaki & Ayano Fukushima-Nomura & Kiyoshi Yashiro & Keiji Tanese & Susumu Toshima & Koichi Ashizaki & Tomohiro Miyai & Junshi Yazaki & Atsuo Kobayashi & Shinichi Namba & Tatsuh, 2023. "Multifaceted analysis of cross-tissue transcriptomes reveals phenotype–endotype associations in atopic dermatitis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Lyubchich, Vyacheslav & Wang, Xingyu & Heyes, Andrew & Gel, Yulia R., 2016. "A distribution-free m-out-of-n bootstrap approach to testing symmetry about an unknown median," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 1-9.
    4. Do, Linh Phuong Catherine & Lyócsa, Štefan & Molnár, Peter, 2021. "Residual electricity demand: An empirical investigation," Applied Energy, Elsevier, vol. 283(C).
    5. Punzo, Antonio & Bagnato, Luca, 2022. "Dimension-wise scaled normal mixtures with application to finance and biometry," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
    6. Lai Yinglei & Gastwirth Joseph L., 2015. "Outlier reset CUSUM for the exploration of copy number alteration data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(4), pages 333-345, August.
    7. Víctor Leiva & Jimmy Corzo & Myrian E. Vergara & Raydonal Ospina & Cecilia Castro, 2024. "A Statistical Methodology for Evaluating Asymmetry after Normalization with Application to Genomic Data," Stats, MDPI, vol. 7(3), pages 1-17, September.
    8. Artur Tiago Silva & Maria Manuela Portela, 2018. "Using Climate-Flood Links and CMIP5 Projections to Assess Flood Design Levels Under Climate Change Scenarios: A Case Study in Southern Brazil," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 4879-4893, December.
    9. Guglielmo Lione & Francesca Brescia & Luana Giordano & Paolo Gonthier, 2022. "Effects of Seasonality and Climate on the Propagule Deposition Patterns of the Chestnut Blight Pathogen Cryphonectria parasitica in Orchards of the Alpine District of North Western Italy," Agriculture, MDPI, vol. 12(5), pages 1-24, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shalit, Haim, 2012. "Using OLS to test for normality," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 2050-2058.
    2. Aldo Goia & Ernesto Salinelli & Pascal Sarda, 2015. "A new powerful version of the BUS test of normality," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(3), pages 449-474, September.
    3. Coin, Daniele, 2008. "A goodness-of-fit test for normality based on polynomial regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 2185-2198, January.
    4. King, Maxwell L. & Zhang, Xibin & Akram, Muhammad, 2020. "Hypothesis testing based on a vector of statistics," Journal of Econometrics, Elsevier, vol. 219(2), pages 425-455.
    5. Timo Kuosmanen & Mogens Fosgerau, 2009. "Neoclassical versus Frontier Production Models? Testing for the Skewness of Regression Residuals," Scandinavian Journal of Economics, Wiley Blackwell, vol. 111(2), pages 351-367, June.
    6. Shigekazu Nakagawa & Hiroki Hashiguchi & Naoto Niki, 2012. "Improved omnibus test statistic for normality," Computational Statistics, Springer, vol. 27(2), pages 299-317, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:028:i03. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.