IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v028i02.html
   My bibliography  Save this article

Improved Subset Autoregression: With R Package

Author

Listed:
  • McLeod, A. Ian
  • Zhang, Ying

Abstract

The FitAR R (R Development Core Team 2008) package that is available on the Comprehensive R Archive Network is described. This package provides a comprehensive approach to fitting autoregressive and subset autoregressive time series. For long time series with complicated autocorrelation behavior, such as the monthly sunspot numbers, subset autoregression may prove more feasible and/or parsimonious than using AR or ARMA models. The two principal functions in this package are SelectModel and FitAR for automatic model selection and model fitting respectively. In addition to the regular autoregressive model and the usual subset autoregressive models (Tong'77), these functions implement a new family of models. This new family of subset autoregressive models is obtained by using the partial autocorrelations as parameters and then selecting a subset of these parameters. Further properties and results for these models are discussed in McLeod and Zhang (2006). The advantages of this approach are that not only is an efficient algorithm for exact maximum likelihood implemented but that efficient methods are derived for selecting high-order subset models that may occur in massive datasets containing long time series. A new improved extended {BIC} criterion, {UBIC}, developed by Chen and Chen (2008) is implemented for subset model selection. A complete suite of model building functions for each of the three types of autoregressive models described above are included in the package. The package includes functions for time series plots, diagnostic testing and plotting, bootstrapping, simulation, forecasting, Box-Cox analysis, spectral density estimation and other useful time series procedures. As well as methods for standard generic functions including print, plot, predict and others, some new generic functions and methods are supplied that make it easier to work with the output from FitAR for bootstrapping, simulation, spectral density estimation and Box-Cox analysis.

Suggested Citation

  • McLeod, A. Ian & Zhang, Ying, 2008. "Improved Subset Autoregression: With R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i02).
  • Handle: RePEc:jss:jstsof:v:028:i02
    DOI: http://hdl.handle.net/10.18637/jss.v028.i02
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v028i02/v28i02.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v028i02/v28i02-figures.R.zip
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v028i02/v28i02-tables.R.zip
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v028.i02?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jirak, Moritz, 2014. "Simultaneous confidence bands for sequential autoregressive fitting," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 130-149.
    2. Sigrunn H. Sørbye & Pedro G. Nicolau & Håvard Rue, 2022. "Finite-sample properties of estimators for first and second order autoregressive processes," Statistical Inference for Stochastic Processes, Springer, vol. 25(3), pages 577-598, October.
    3. Ma, Tao & Zhou, Zhou & Abdulhai, Baher, 2015. "Nonlinear multivariate time–space threshold vector error correction model for short term traffic state prediction," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 27-47.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:028:i02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.