IDEAS home Printed from https://ideas.repec.org/a/jof/jforec/v29y2010i8p728-750.html
   My bibliography  Save this article

Variable selection in STAR models with neighbourhood effects using genetic algorithms

Author

Listed:
  • Isolina Alberto
  • Asunción Beamonte
  • Pilar Gargallo
  • Pedro M. Mateo
  • Manuel Salvador

Abstract

In this paper we deal with the problem of variable selection in spatiotemporal autoregressive (STAR) models with neighbourhood effects. We propose a procedure to carry out the selection process, taking into account the uncertainty associated with estimation of the parameters and the predictive behaviour of the compared models, in order to give more realism to the analysis. We set up a multi-objective programming problem that combines the use of different criteria to measure both these aspects. We use genetic algorithms which are very flexible and suitable for our multicriteria decision problem. In particular, the procedure allows us to estimate the number of spatial and temporal nearest neighbours as well as their relative effects. The methodology is illustrated through an application to the real estate market of Zaragoza. Copyright (C) 2010 John Wiley & Son, Ltd.

Suggested Citation

  • Isolina Alberto & Asunción Beamonte & Pilar Gargallo & Pedro M. Mateo & Manuel Salvador, 2010. "Variable selection in STAR models with neighbourhood effects using genetic algorithms," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(8), pages 728-750, December.
  • Handle: RePEc:jof:jforec:v:29:y:2010:i:8:p:728-750
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/for.1164
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thanos, Sotirios & Dubé, Jean & Legros, Diègo, 2016. "Putting time into space: the temporal coherence of spatial applications in the housing market," Regional Science and Urban Economics, Elsevier, vol. 58(C), pages 78-88.
    2. He Jiang, 2022. "A novel robust structural quadratic forecasting model and applications," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1156-1180, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:29:y:2010:i:8:p:728-750. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.