IDEAS home Printed from https://ideas.repec.org/a/jof/jforec/v26y2007i3p189-202.html
   My bibliography  Save this article

Single-season heteroscedasticity in time series

Author

Listed:
  • Jeremy Penzer

    (Department of Statistics, London School of Economics, London, UK)

  • Yorghos Tripodis

    (Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts, USA)

Abstract

We consider seasonal time series in which one season has variance that is different from all the others. This behaviour is evident in indices of production where variability is highest for the month with the lowest level of production. We show that when one season has different variability from others there are constraints on the seasonal models that can be used; neither dummy and trigonometric models are effective in modelling this type of behaviour. We define a general model that provides an appropriate representation of single-season heteroscedasticity and suggest a likelihood ratio test for the presence of periodic variance in one season. Copyright © 2007 John Wiley & Sons, Ltd.

Suggested Citation

  • Jeremy Penzer & Yorghos Tripodis, 2007. "Single-season heteroscedasticity in time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(3), pages 189-202.
  • Handle: RePEc:jof:jforec:v:26:y:2007:i:3:p:189-202
    DOI: 10.1002/for.1022
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/for.1022
    File Function: Link to full text; subscription required
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.1022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Harry L. Hurd & Neil L. Gerr, 1991. "Graphical Methods For Determining The Presence Of Periodic Correlation," Journal of Time Series Analysis, Wiley Blackwell, vol. 12(4), pages 337-350, July.
    2. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    3. Findley, David F, et al, 1998. "New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 127-152, April.
    4. Osborn, Denise R & Smith, Jeremy P, 1989. "The Performance of Periodic Autoregressive Models in Forecasting Seasonal U. K. Consumption," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(1), pages 117-127, January.
    5. Engle, Robert F., 1984. "Wald, likelihood ratio, and Lagrange multiplier tests in econometrics," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 13, pages 775-826, Elsevier.
    6. Findley, David F, et al, 1998. "New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 169-177, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siem Jan Koopman & Marius Ooms & Irma Hindrayanto, 2009. "Periodic Unobserved Cycles in Seasonal Time Series with an Application to US Unemployment," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(5), pages 683-713, October.
    2. Hindrayanto, Irma & Koopman, Siem Jan & Ooms, Marius, 2010. "Exact maximum likelihood estimation for non-stationary periodic time series models," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2641-2654, November.
    3. Yorghos Tripodis & Jeremy Penzer, 2009. "Modelling time series with season-dependent autocorrelation structure," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(7), pages 559-574.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giancarlo Bruno & Edoardo Otranto, 2006. "The choice of time interval in seasonal adjustment: A heuristic approach," Statistical Papers, Springer, vol. 47(3), pages 393-417, June.
    2. Mauricio Gallardo & Hernán Rubio, 2009. "Diagnóstico de estacionalidad con X-12-ARIMA," Economic Statistics Series 76, Central Bank of Chile.
    3. Hall, Viv B & Thomson, Peter, 2022. "A boosted HP filter for business cycle analysis: evidence from New Zealand’s small open economy," Working Paper Series 9473, Victoria University of Wellington, School of Economics and Finance.
    4. Kroes, James R. & Manikas, Andrew S. & Gattiker, Thomas F., 2018. "Operational leanness and retail firm performance since 1980," International Journal of Production Economics, Elsevier, vol. 197(C), pages 262-274.
    5. Davidson, Russell & MacKinnon, James G., 1989. "Testing for Consistency using Artificial Regressions," Econometric Theory, Cambridge University Press, vol. 5(3), pages 363-384, December.
    6. Łukasz Lenart, 2017. "Examination of Seasonal Volatility in HICP for Baltic Region Countries: Non-Parametric Test versus Forecasting Experiment," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 9(1), pages 29-67, March.
    7. Quenneville, Benoit & Ladiray, Dominique & Lefrancois, Bernard, 2003. "A note on Musgrave asymmetrical trend-cycle filters," International Journal of Forecasting, Elsevier, vol. 19(4), pages 727-734.
    8. Massmann, Michael & Mitchell, James, 2003. "Reconsidering the evidence: Are Eurozone business cycles converging," ZEI Working Papers B 05-2003, University of Bonn, ZEI - Center for European Integration Studies.
    9. Russell Davidson & Victoria Zinde‐Walsh, 2017. "Advances in specification testing," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 50(5), pages 1595-1631, December.
    10. Hai Yue Liu & Xiao Lan Chen, 2017. "The imported price, inflation and exchange rate pass-through in China," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1279814-127, January.
    11. Henryk Gurgul & Marcin Suder, 2013. "The Properties of ATMs Development Stages - an Empirical Analysis," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 14(3), pages 443-466, September.
    12. Carlos A. Medel, 2018. "A Comparison Between Direct and Indirect Seasonal Adjustment of the Chilean GDP 1986–2009 with X-12-ARIMA," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 14(1), pages 47-87, April.
    13. Stefania D'Amico & Athanasios Orphanides, 2008. "Uncertainty and disagreement in economic forecasting," Finance and Economics Discussion Series 2008-56, Board of Governors of the Federal Reserve System (U.S.).
    14. Kirchner, Robert, 1999. "Auswirkungen des neuen Saisonbereinigungsverfahrens Census X-12-ARIMA auf die aktuelle Wirtschaftsanalyse in Deutschland," Discussion Paper Series 1: Economic Studies 1999,07, Deutsche Bundesbank.
    15. M. Angeles Carnero & Siem Jan Koopman & Marius Ooms, 2003. "Periodic Heteroskedastic RegARFIMA Models for Daily Electricity Spot Prices," Tinbergen Institute Discussion Papers 03-071/4, Tinbergen Institute.
    16. Flávio de Freitas Val & Wagner Piazza Gaglianone & Marcelo Cabus Klotzle & Antonio Carlos Figueiredo Pinto, 2017. "Estimating the Credibility of Brazilian Monetary Policy using Forward Measures and a State-Space Model," Working Papers Series 463, Central Bank of Brazil, Research Department.
    17. Viv B. Hall & Peter Thomson, 2021. "Does Hamilton’s OLS Regression Provide a “better alternative” to the Hodrick-Prescott Filter? A New Zealand Business Cycle Perspective," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(2), pages 151-183, November.
    18. Adrian C. Darnell, 1994. "A Dictionary Of Econometrics," Books, Edward Elgar Publishing, number 118.
    19. Carlos A. Medel, 2018. "Forecasting Inflation with the Hybrid New Keynesian Phillips Curve: A Compact-Scale Global VAR Approach," International Economic Journal, Taylor & Francis Journals, vol. 32(3), pages 331-371, July.
    20. Møller, Niels Framroze & Møller Andersen, Frits, 2015. "An econometric analysis of electricity demand response to price changes at the intra-day horizon: The case of manufacturing industry in West Denmark," MPRA Paper 66178, University Library of Munich, Germany, revised 15 Aug 2015.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:26:y:2007:i:3:p:189-202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.