IDEAS home Printed from https://ideas.repec.org/a/jns/jbstat/v236y2016i1p389-409n2.html
   My bibliography  Save this article

On the Predictive Content of Nonlinear Transformations of Lagged Autoregression Residuals and Time Series Observations

Author

Listed:
  • Rossen Anja

    (Hamburg Institute of International Economics (HWWI), Heimhuder Str. 71, D-20148 Hamburg, Germany)

Abstract

Although many macroeconomic time series are assumed to follow nonlinear processes, nonlinear models often do not provide better predictions than their linear counterparts. Furthermore, nonlinear models easily become very complex and difficult to estimate. The aim of this study is to investigate whether simple nonlinear extensions of autoregressive processes are able to provide more accurate forecasting results than linear models. Therefore, simple autoregressive processes are extended by means of nonlinear transformations (quadratic, cubic, sine, exponential functions) of lagged time series observations and autoregression residuals. The proposed forecasting models are applied to a large set of macroeconomic and financial time series for 10 European countries. Findings suggest that these models, including nonlinear transformation of lagged autoregression residuals, are able to provide better forecasting results than simple linear models. Thus, it may be possible to improve the forecasting accuracy of linear models by including nonlinear components. This is especially true for time series that are positively tested for nonlinear characteristics and longer forecast horizons.

Suggested Citation

  • Rossen Anja, 2016. "On the Predictive Content of Nonlinear Transformations of Lagged Autoregression Residuals and Time Series Observations," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 236(3), pages 389-409, May.
  • Handle: RePEc:jns:jbstat:v:236:y:2016:i:1:p:389-409:n:2
    DOI: 10.1515/jbnst-2015-1019
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jbnst-2015-1019
    Download Restriction: no

    File URL: https://libkey.io/10.1515/jbnst-2015-1019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    nonlinear extension; autoregressive residuals; pseudo out-of-sample forecasting procedure;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • E47 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jns:jbstat:v:236:y:2016:i:1:p:389-409:n:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.