IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2023-17-3.html
   My bibliography  Save this article

An Agent-Based Model of the 2020 International Policy Diffusion in Response to the COVID-19 Pandemic with Particle Filter

Author

Abstract

Global problems, such as pandemics and climate change, require rapid international coordination and diffusion of policy. These phenomena are rare however, with one notable example being the international policy response to the COVID-19 pandemic in early 2020. Here we build an agent-based model of this rapid policy diffusion, where countries constitute the agents and with the principal mechanism for diffusion being peer mimicry. Since it is challenging to predict accurately the policy diffusion curve, we utilize data assimilation, that is an “on-line†feed of data to constrain the model against observations. The specific data assimilation algorithm we apply is a particle filter because of its convenient implementation, its ability to handle categorical variables and because the model is not overly computationally expensive, hence a more efficient algorithm is not required. We find that the model alone is able to predict the policy diffusion relatively well with an ensemble of at least 100 simulation runs. The particle filter however improves the fit to the data, reliably so from 500 runs upwards, and increasing filtering frequency results in improved prediction.

Suggested Citation

  • Yannick Oswald & Nick Malleson & Keiran Suchak, 2024. "An Agent-Based Model of the 2020 International Policy Diffusion in Response to the COVID-19 Pandemic with Particle Filter," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 27(2), pages 1-3.
  • Handle: RePEc:jas:jasssj:2023-17-3
    as

    Download full text from publisher

    File URL: https://www.jasss.org/27/2/3/3.pdf
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2023-17-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesco Renzini (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.