IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2022-27-2.html
   My bibliography  Save this article

Emergency Warning Dissemination in a Multiplex Social Network

Author

Listed:

Abstract

Disasters vary in many characteristics, but their amount of forewarning—the amount of time remaining until the disaster strikes—is a crucial factor affecting the dissemination of emergency warnings. People can be warned by public safety officials through broadcast channels, such as commercial TV and radio, that transmit simultaneous warnings to mass audiences. In addition, however, warnings are also transmitted by peers through informal warning networks that operate through contagion from one person to another. This paper establishes an interdisciplinary agent-based model with Monte Carlo simulations to assess the relative effects of these broadcast and contagion processes in a multiplex social network. This multiplex approach models multiple channels of informal communication—phone, word-of-mouth, and social media—that vary in their attribute values. Each agent is an individual in a threatened community who, once warned, has a probability of warning others in their social network using one of these channels. The probability of an individual warning others is based on their warning source and the time remaining until disaster impact, among other variables. We model warning dissemination using simulation parameter values chosen from empirical studies of disaster warnings along with the spatial aspects of the Coos Bay, OR, USA and Seaside, OR, USA communities. Results indicate that the initial broadcast size has a negative correlation with the critical percolation threshold, which varies from approximately 1–5%, depending on the size of an initial broadcast. A sensitivity analysis on the model parameters indicates that, along with initial broadcast size and sharing probability, forewarning and confidence in the warning significantly affect the total number of warning recipients. The results generated from this study identify areas for future research and can inform community officials about the effects of event and community characteristics on the dissemination of emergency warnings in their communities.

Suggested Citation

  • Charles Koll & Michael Lindell & Chen Chen & Haizhong Wang, 2023. "Emergency Warning Dissemination in a Multiplex Social Network," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 26(1), pages 1-7.
  • Handle: RePEc:jas:jasssj:2022-27-2
    as

    Download full text from publisher

    File URL: https://www.jasss.org/26/1/7/7.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nagarajan, Magesh & Shaw, Duncan & Albores, Pavel, 2012. "Disseminating a warning message to evacuate: A simulation study of the behaviour of neighbours," European Journal of Operational Research, Elsevier, vol. 220(3), pages 810-819.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng, Xinhang & Jiang, Yanli & Gai, Wenmei, 2024. "Rural community response to accidental toxic gas release: An individual emergency response model during self-organized evacuations," Reliability Engineering and System Safety, Elsevier, vol. 248(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Esposito Amideo, A. & Scaparra, M.P. & Kotiadis, K., 2019. "Optimising shelter location and evacuation routing operations: The critical issues," European Journal of Operational Research, Elsevier, vol. 279(2), pages 279-295.
    2. Xu, Haifeng & Ding, Yi & Zhang, Cheng & Tan, Bernard C.Y., 2023. "Too official to be effective: An empirical examination of unofficial information channel and continued use of retracted articles," Research Policy, Elsevier, vol. 52(7).
    3. Green, Lawrence & Sung, Ming-Chien & Ma, Tiejun & Johnson, Johnnie E. V., 2019. "To what extent can new web-based technology improve forecasts? Assessing the economic value of information derived from Virtual Globes and its rate of diffusion in a financial market," European Journal of Operational Research, Elsevier, vol. 278(1), pages 226-239.
    4. Preece, Gary & Shaw, Duncan & Hayashi, Haruo, 2015. "Application of the Viable System Model to analyse communications structures: A case study of disaster response in Japan," European Journal of Operational Research, Elsevier, vol. 243(1), pages 312-322.
    5. Busby, J.S., 2019. "The co-evolution of competition and parasitism in the resource-based view: A risk model of product counterfeiting," European Journal of Operational Research, Elsevier, vol. 276(1), pages 300-313.
    6. Lynda Cheshire, 2015. "‘Know your neighbours’: disaster resilience and the normative practices of neighbouring in an urban context," Environment and Planning A, , vol. 47(5), pages 1081-1099, May.
    7. Rodríguez-Espíndola, Oscar & Albores, Pavel & Brewster, Christopher, 2018. "Disaster preparedness in humanitarian logistics: A collaborative approach for resource management in floods," European Journal of Operational Research, Elsevier, vol. 264(3), pages 978-993.
    8. Busby, J.S. & Onggo, B.S.S. & Liu, Y., 2016. "Agent-based computational modelling of social risk responses," European Journal of Operational Research, Elsevier, vol. 251(3), pages 1029-1042.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2022-27-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesco Renzini (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.