IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2015-39-1.html
   My bibliography  Save this article

Evidence Based and Conceptual Model Driven Approach for Agent-Based Policy Modelling

Author

Abstract

Agent-based policy modelling is an application of agent-based social simulation. In this contribution it is applied to strategic policy making in the public sector. Open government principles relevant in this domain demand solutions that trace the origins of modelling decisions from narrative texts (background documents and stakeholder scenarios) through the whole policy modelling process up to the simulation results. With the help of such traces, decisions made on the basis of such simulation results are more transparent and comprehensible. This paper presents a conceptual model-driven approach developed and implemented in the OCOPOMO project. The approach ensures traceability by integrating technologies for agent-based social simulation, semantic web and model-driven development. Narrative texts are transferred into Consistent Conceptual Description (CCD) models. Those CCD models are transferred semi-automatically into formal policy models implemented in the DRAMS (Declarative Rule-based Agent Modelling System) language. These formal policy models are further elaborated (i.e. the policy modeller has still full flexibility in programming the model), and runnable simulation models are programmed. From the simulation logs, model-based scenarios are generated to interpret and support a better understanding of simulation results. The model-based scenarios are textual narratives with charts summarising the output produced by the simulation runs. Thereby passages in these texts are linked with documents containing original narrative scenarios. These traces are realised via the CCD models. A well-elaborated policy modelling process and a software toolbox support the approach. A pilot case exemplifies the application of the process and the toolbox. Evaluation results from the OCOPOMO project show benefits as well as limitations of the approach. We also reflect how the process and toolbox can be transferred into other application domains.

Suggested Citation

  • Sabrina Scherer & Maria Wimmer & Ulf Lotzmann & Scott Moss & Daniele Pinotti, 2015. "Evidence Based and Conceptual Model Driven Approach for Agent-Based Policy Modelling," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(3), pages 1-14.
  • Handle: RePEc:jas:jasssj:2015-39-1
    as

    Download full text from publisher

    File URL: https://www.jasss.org/18/3/14/14.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Camelia Florela Voinea & Martin Neumann & Klaus G. Troitzsch, 2023. "The State and the Citizen: Overview of a complex relationship from a paradigmatic perspective," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(1), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2015-39-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesco Renzini (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.