IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2013-54-3.html
   My bibliography  Save this article

Coevolution of Opinions and Directed Adaptive Networks in a Social Group

Author

Listed:
  • Jiongming Su
  • Baohong Liu
  • Qi Li
  • Hongxu Ma

Abstract

In the interactions of a social group, people usually update and express their opinions through the observational learning behaviors. The formed directed networks are adaptive which are influenced by the evolution of opinions; while in turn modify the dynamic process of opinions. We extend the Hegselmann-Krause (HK) model to investigate the coevolution of opinions and observational networks (directed Erdös-Rényi network). Directed links can be broken with a probability if the difference of two opinions exceeds a certain confidence level ε, but new links can form randomly. Simulation results reveal that both the static networks and adaptive networks have three types: more than one cluster (fragmented) with small ε, consensus with a certain probability with moderate ε, always consensus with large ε. Also, on both networks, the tendencies of average of opinion clusters, consensus probability and average of convergence rounds are similar, and the fewest of average of opinion clusters satisfies the rough 1/(2 ε)-rule. On static networks, final opinions are influenced by percolation properties of networks; but on directed adaptive networks, it is basically determined by the rewiring probability, which increases the average degree of networks. When rewired probability is larger than zero, the results of adaptive networks are getting better than static networks. However, after the final average in- and out-degree of both networks exceeds a threshold, there is little improvement on the results.

Suggested Citation

  • Jiongming Su & Baohong Liu & Qi Li & Hongxu Ma, 2014. "Coevolution of Opinions and Directed Adaptive Networks in a Social Group," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 17(2), pages 1-4.
  • Handle: RePEc:jas:jasssj:2013-54-3
    as

    Download full text from publisher

    File URL: https://www.jasss.org/17/2/4/4.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xi Chen & Shen Zhao & Wei Li, 2019. "Opinion Dynamics Model Based on Cognitive Styles: Field-Dependence and Field-Independence," Complexity, Hindawi, vol. 2019, pages 1-12, February.
    2. Wu, Yujia & Guo, Peng, 2024. "Effects of relative homophily and relative heterophily on opinion dynamics in coevolving networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 644(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2013-54-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesco Renzini (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.