IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2013-127-3.html
   My bibliography  Save this article

An Agent-Based Training System for Optimizing the Layout of AFVs' Initial Filling Stations

Author

Listed:
  • Tieju Ma
  • Jiangjiang Zhao
  • Shijian Xiang
  • Ya Zhu
  • Peipei Liu

Abstract

The availability of refuelling locations for alternative fuel vehicles (AFVs) is an important factor that drivers consider before adopting an AFV; thus, the layout of initial filling stations for AFVs will influence the adoption of AFVs. This paper presents a training system for optimising the layout of initial filling stations for AFVs by linking an agent-based model of the adoption of AFVs with a real city/area's road network, as well as the city/area's social and economic background. In the agent-based model, two types of agents (driver agents and station owner agents) interact with each other in a city/area's road network, stored in a GIS (Geographic Information System). With simulation scenario analyses and a genetic algorithm, the training system presented in this paper can help decision makers determine close-to-optimal layouts for initial AFV filling stations. This paper also presents a case study of the application of the training system that analyses the layout of fast-charging or battery-changing stations for the promotion of electric vehicles adoption in Shanghai.

Suggested Citation

  • Tieju Ma & Jiangjiang Zhao & Shijian Xiang & Ya Zhu & Peipei Liu, 2014. "An Agent-Based Training System for Optimizing the Layout of AFVs' Initial Filling Stations," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 17(4), pages 1-6.
  • Handle: RePEc:jas:jasssj:2013-127-3
    as

    Download full text from publisher

    File URL: https://www.jasss.org/17/4/6/6.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Jiangjiang & Ma, Tieju, 2016. "Optimizing layouts of initial AFV refueling stations targeting different drivers, and experiments with agent-based simulations," European Journal of Operational Research, Elsevier, vol. 249(2), pages 706-716.
    2. Arijit Ghosh & Neha Ghorui & Sankar Prasad Mondal & Suchitra Kumari & Biraj Kanti Mondal & Aditya Das & Mahananda Sen Gupta, 2021. "Application of Hexagonal Fuzzy MCDM Methodology for Site Selection of Electric Vehicle Charging Station," Mathematics, MDPI, vol. 9(4), pages 1-27, February.
    3. Yi, Zonggen & Bauer, Peter H., 2016. "Optimization models for placement of an energy-aware electric vehicle charging infrastructure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 227-244.
    4. Guo, Sen & Zhao, Huiru, 2015. "Optimal site selection of electric vehicle charging station by using fuzzy TOPSIS based on sustainability perspective," Applied Energy, Elsevier, vol. 158(C), pages 390-402.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2013-127-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesco Renzini (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.