IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2012-124-3.html
   My bibliography  Save this article

Enhancing Recycling of Construction Materials: An Agent Based Model with Empirically Based Decision Parameters

Author

Abstract

Recycling of construction material is a valuable option for minimizing construction & demolition waste streams to landfills and mitigating primary mineral resource depletion. Material flows in the construction sector are governed by a complex socio-technical system in which awarding authorities decide in interaction with other actors on the use of construction materials. Currently, construction & demolition waste is still mainly deposited in landfills, as construction actors lack the necessary information and training regarding the use of recycled materials, and as a result have low levels of acceptance for them. This paper presents an agent-based model of the Swiss recycled construction material market based on empirical data derived from the agent operationalization approach. It elaborates on how recycling of construction materials can be enhanced by analysing key factors affecting the demand for recycled construction materials and developing scenarios towards a sustainable construction waste management. Doing so it demonstrates how detailed empirical agent decision data were incrementally included in the ABM model. Raising construction actors’ awareness of recycled materials as a decision option, in combination with small price incentives was most effective for enhancing the use of recycled materials. This could lead to a 50% reduction of construction & demolition waste streams to landfills, and significantly reduce the environmental impacts related to concrete applications. From a methodological perspective, although the agent operationalization approach provides a large empirical foundation, incremental model development turned out to be particularly important for the traceability of results and a realistic system representation.

Suggested Citation

  • Christof Knoeri & Igor Nikolic & Hans-Joerg Althaus & Claudia R. Binder, 2014. "Enhancing Recycling of Construction Materials: An Agent Based Model with Empirically Based Decision Parameters," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 17(3), pages 1-10.
  • Handle: RePEc:jas:jasssj:2012-124-3
    as

    Download full text from publisher

    File URL: https://www.jasss.org/17/3/10/10.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oluwole Abayomi Soyinka & Mesthrige Jayantha Wadu & Udara Willhelm Abeydera Lebunu Hewage & Timo Olugbenga Oladinrin, 2023. "Scientometric review of construction demolition waste management: a global sustainability perspective," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 10533-10565, October.
    2. Claudius Gräbner & Catherine S. E. Bale & Bernardo Alves Furtado & Brais Alvarez-Pereira & James E. Gentile & Heath Henderson & Francesca Lipari, 2019. "Getting the Best of Both Worlds? Developing Complementary Equation-Based and Agent-Based Models," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 763-782, February.
    3. Valeria Superti & Cynthia Houmani & Ralph Hansmann & Ivo Baur & Claudia R. Binder, 2021. "Strategies for a Circular Economy in the Construction and Demolition Sector: Identifying the Factors Affecting the Recommendation of Recycled Concrete," Sustainability, MDPI, vol. 13(8), pages 1-32, April.
    4. Rizzati, Massimiliano & Landoni, Matteo, 2024. "A systematic review of agent-based modelling in the circular economy: Insights towards a general model," Structural Change and Economic Dynamics, Elsevier, vol. 69(C), pages 617-631.
    5. Busch, Jonathan & Roelich, Katy & Bale, Catherine S.E. & Knoeri, Christof, 2017. "Scaling up local energy infrastructure; An agent-based model of the emergence of district heating networks," Energy Policy, Elsevier, vol. 100(C), pages 170-180.
    6. Zhikun Ding & Wenyan Gong & Shenghan Li & Zezhou Wu, 2018. "System Dynamics versus Agent-Based Modeling: A Review of Complexity Simulation in Construction Waste Management," Sustainability, MDPI, vol. 10(7), pages 1-13, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2012-124-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesco Renzini (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.