IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2006-72-2.html
   My bibliography  Save this article

Simulating Gender Stratification

Author

Abstract

The simulation of promotional competitions in corporations described herein allows comparisons of suggested reasons for the paucity of women in the highest level of corporate management. Runs with small, medium and large-sized companies all give similar results. The strongest effect is evidenced when men are given a bonus in performance evaluations. Similar stratification is observed when men's scores are drawn from a distribution with increased variance. Other explanations (increased female attrition, career delays for women, line-staff divisions, and external labor market) do not, by themselves produce strong gender stratification, but could add to that produced by biased evaluations.

Suggested Citation

  • James F. Robison-Cox & Richard F. Martell & Cynthia G. Emrich, 2007. "Simulating Gender Stratification," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(3), pages 1-8.
  • Handle: RePEc:jas:jasssj:2006-72-2
    as

    Download full text from publisher

    File URL: https://www.jasss.org/10/3/8/8.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Matteo Richiardi & Roberto Leombruni & Nicole J. Saam & Michele Sonnessa, 2006. "A Common Protocol for Agent-Based Social Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 9(1), pages 1-15.
    2. Victor Palmer, 2006. "Simulation of the Categorization-Elaboration Model of Diversity and Work-Group Performance," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 9(3), pages 1-3.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ivonne Schwartz & Mark Kirstein, 2022. "Time is limited on the road to asymptopia," Papers 2208.08169, arXiv.org.
    2. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    3. Ian McCarthy, 2008. "Simulating Sequential Search Models with Genetic Algorithms: Analysis of Price Ceilings, Taxes, Advertising and Welfare," CAEPR Working Papers 2008-010, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    4. Ahmed Laatabi & Nicolas Marilleau & Tri Nguyen-Huu & Hassan Hbid & Mohamed Ait Babram, 2018. "ODD+2D: An ODD Based Protocol for Mapping Data to Empirical ABMs," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 21(2), pages 1-9.
    5. Flaminio Squazzoni, 2010. "The impact of agent-based models in the social sciences after 15 years of incursions," History of Economic Ideas, Fabrizio Serra Editore, Pisa - Roma, vol. 18(2), pages 197-234.
    6. J. Gareth Polhill & Dawn C. Parker & Daniel Brown & Volker Grimm, 2008. "Using the ODD Protocol for Describing Three Agent-Based Social Simulation Models of Land-Use Change," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 11(2), pages 1-3.
    7. Ju-Sung Lee & Tatiana Filatova & Arika Ligmann-Zielinska & Behrooz Hassani-Mahmooei & Forrest Stonedahl & Iris Lorscheid & Alexey Voinov & J. Gareth Polhill & Zhanli Sun & Dawn C. Parker, 2015. "The Complexities of Agent-Based Modeling Output Analysis," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(4), pages 1-4.
    8. Elizabeth Hunter & Brian Mac Namee & John D. Kelleher, 2020. "A Model for the Spread of Infectious Diseases in a Region," IJERPH, MDPI, vol. 17(9), pages 1-19, April.
    9. Robert Marks, 2007. "Validating Simulation Models: A General Framework and Four Applied Examples," Computational Economics, Springer;Society for Computational Economics, vol. 30(3), pages 265-290, October.
    10. Francesco Lamperti, 2015. "An Information Theoretic Criterion for Empirical Validation of Time Series Models," LEM Papers Series 2015/02, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    11. Muqtafi Akhmad & Shuang Chang & Hiroshi Deguchi, 2021. "Closed-mindedness and insulation in groupthink: their effects and the devil’s advocacy as a preventive measure," Journal of Computational Social Science, Springer, vol. 4(2), pages 455-478, November.
    12. Almas Heshmati & Flávio Lenz-Cesar, 2015. "Policy simulation of firms’ cooperation in innovation," Research Evaluation, Oxford University Press, vol. 24(3), pages 293-311.
    13. Páez-Pérez, David & Sánchez-Silva, Mauricio, 2016. "A dynamic principal-agent framework for modeling the performance of infrastructure," European Journal of Operational Research, Elsevier, vol. 254(2), pages 576-594.
    14. Thomas Brenner & Claudia Werker, 2007. "A Taxonomy of Inference in Simulation Models," Computational Economics, Springer;Society for Computational Economics, vol. 30(3), pages 227-244, October.
    15. Paola Tubaro, 2011. "Computational Economics," Chapters, in: John B. Davis & D. Wade Hands (ed.), The Elgar Companion to Recent Economic Methodology, chapter 10, Edward Elgar Publishing.
    16. Albert Banal-Estañol & Augusto Rupérez-Micola, 2010. "Are agent-based simulations robust? The wholesale electricity trading case," Economics Working Papers 1214, Department of Economics and Business, Universitat Pompeu Fabra.
    17. Enrico Cozzoni & Carmine Passavanti & Cristina Ponsiglione & Simonetta Primario & Pierluigi Rippa, 2021. "Interorganizational Collaboration in Innovation Networks: An Agent Based Model for Responsible Research and Innovation in Additive Manufacturing," Sustainability, MDPI, vol. 13(13), pages 1-17, July.
    18. Annalisa Fabretti, 2013. "On the problem of calibrating an agent based model for financial markets," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 8(2), pages 277-293, October.
    19. James Nolan & Dawn Parker & G. Cornelis Van Kooten & Thomas Berger, 2009. "An Overview of Computational Modeling in Agricultural and Resource Economics," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 57(4), pages 417-429, December.
    20. Cathérine Grisar & Matthias Meyer, 2016. "Use of simulation in controlling research: a systematic literature review for German-speaking countries," Management Review Quarterly, Springer, vol. 66(2), pages 117-157, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2006-72-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesco Renzini (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.