Author
Abstract
Climate change leading to Climate extremes in the twenty-first century is more evident in megacities across the world, especially in West Africa. The Greater Accra region is one of the most populated regions in West Africa. As a result, the region has become more susceptible to climate extremes such as floods, heatwaves, and droughts. The study employed the Coupled Model Intercomparison Project 6 models in simulating climate extreme indices under the Shared Socioeconomic Pathway scenarios (SSPs) over West Africa between 1979 and 2059 as exemplified by the Greater Accra region. The study observed a generally weak drought in the historical period and expected to intensify especially under SSP585 in Greater Accra. For instance, continuous dry days (CDD) reveal an increasing trend under the SSPs. Similarly, the overall projected trend of CDD over West Africa reveals an increase signifying a more frequent and longer drought in the future. The flood indices revealed a surge in the intensity and duration of extreme precipitation events under the SSPs in the region. For instance, R99pTOT and Rx5days are expected to significantly increase under the SSPs with intensification under the SSP245, SSP370, and SSP585. A similar trend has been projected across West Africa, especially along the Guinean coast. The study foresees a gradual and intensifying rise in heatwave indices over the Greater Accra region. The warming and cooling indices reveal an increasing and decreasing trend respectively in the historical period as well as under the SSPs particularly within urban centers like Accra and Tema. Most West African countries are projected to observe more frequent warm days and nights with cold nights and days becoming less frequent. Expected effects of future climate extreme indices pose potential threats to the water, food, and energy systems as well as trigger recurrent floods and droughts over Greater Accra. The findings of the study are expected to inform climate policies and the nationally determined contribution of the Paris Agreement as well as address the sustainable development goal 11 (Sustainable cities) and 13 (Climate action) in West Africa.
Suggested Citation
Siabi, E. K. & Awafo, E. A. & Kabobah, A. T. & Derkyi, N. S. A. & Akpoti, Komlavi & Anornu, G. K. & Yazdanie, M., 2024.
"Quantifying future climate extreme indices: implications for sustainable urban development in West Africa, with a focus on the Greater Accra Region,"
Papers published in Journals (Open Access), International Water Management Institute, pages 1-5:167..
Handle:
RePEc:iwt:jounls:h052995
DOI: 10.1007/s43621-024-00352-w
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iwt:jounls:h052995. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chandima Gunadasa (email available below). General contact details of provider: https://edirc.repec.org/data/iwmiclk.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.