IDEAS home Printed from https://ideas.repec.org/a/iwt/jounls/h051297.html
   My bibliography  Save this article

Sustainable irrigation technologies: a water-energy-food (WEF) nexus perspective towards achieving more crop per drop per joule per hectare

Author

Listed:
  • Taguta, C.
  • Dirwai, T. L.
  • Senzanje, A.
  • Sikka, Alok
  • Mabhaudhi, Tafadzwanashe

Abstract

Sustainable agricultural intensification requires irrigation methods and strategies to minimize yield penalties while optimizing water, land and energy use efficiencies. We assessed, from a silo-based and integrated water-energy-food (WEF) nexus perspective, the performance of irrigation technologies in different agro-climatic regions. Secondary to this, we assessed the impact of adopting systematic approaches such as the WEF nexus on improving efficiency in irrigated agriculture through irrigation modernization. The evidence-based perspectives of silo-based performances individually considered the metrics of yield (Y), water use efficiency (WUE), and energy productivity (EP). The WEF nexus approach applied sustainability polygons to integrate the three metrics into a nexus index representing the holistic performance of the irrigation technologies. Silo-based performance in temperate regions suggests net gains for WUE (+1.10 kg m-3 ) and Y (+6.29 ton ha-1 ) when transitioning from furrow to sprinkler irrigation, with a net loss in EP (-3.82 ton MJ-1 ). There is potential for a net loss on EP (-3.33 ton MJ-1 ) when transitioning from furrow to drip system in temperate regions. The best performance of irrigation technologies in dry regions in water, energy and food silos was achieved by sprinkler, drip and furrow irrigation systems, respectively. Thus, appraising irrigation technologies from a silos perspective promotes individual silos, which renders an unsustainable picture of the performance of irrigation systems. The integrative WEF nexus approach successfully highlighted the trade-offs and synergies in the nexus of water, energy and food in irrigated agriculture. Drip irrigation led all irrigation technologies in WEF nexus performance in dry (21.44 unit2 ), tropical (23.98 unit2 ), and temperate regions (47.28 unit2 ). Overall, the irrigation modernization pathway to drip technology from either furrow or sprinkler systems improves irrigated agriculture’s WEF nexus performance in all three regions for more crop per drop per joule per hectare under climate change. This can promote inclusive and sustainable irrigation development within the planetary boundaries.

Suggested Citation

  • Taguta, C. & Dirwai, T. L. & Senzanje, A. & Sikka, Alok & Mabhaudhi, Tafadzwanashe, 2022. "Sustainable irrigation technologies: a water-energy-food (WEF) nexus perspective towards achieving more crop per drop per joule per hectare," Papers published in Journals (Open Access), International Water Management Institute, pages 1-17(7):073.
  • Handle: RePEc:iwt:jounls:h051297
    DOI: 10.1088/1748-9326/ac7b39
    as

    Download full text from publisher

    File URL: https://iopscience.iop.org/article/10.1088/1748-9326/ac7b39/pdf
    Download Restriction: no

    File URL: https://libkey.io/10.1088/1748-9326/ac7b39?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mabhaudhi, Tafadzwanashe & Dirwai, Tinashe Lindel & Taguta, Cuthbert & Sikka, Alok & Lautze, Jonathan, 2023. "Mapping Decision Support Tools (DSTs) on agricultural water productivity: A global systematic scoping review," Agricultural Water Management, Elsevier, vol. 290(C).
    2. Jin, Xuanyi & Jiang, Wenrui & Fang, Delin & Wang, Saige & Chen, Bin, 2024. "Evaluation and driving force analysis of the water-energy‑carbon nexus in agricultural trade for RCEP countries," Applied Energy, Elsevier, vol. 353(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iwt:jounls:h051297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chandima Gunadasa (email available below). General contact details of provider: https://edirc.repec.org/data/iwmiclk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.