IDEAS home Printed from https://ideas.repec.org/a/iwt/jounls/h050851.html
   My bibliography  Save this article

Phosphorus export from two contrasting rural watersheds in the (sub) humid Ethiopian highlands

Author

Listed:
  • Sishu, F. K.
  • Bekele, A. M.
  • Schmitter, Petra
  • Tilahun, S. A.
  • Steenhuis, T. S.

Abstract

Establishing worldwide sustainable and phosphorus efficient cropping systems is urgently needed because the supply of suitable phosphate rock is limited, and excess phosphorus in streams causes eutrophication. One of the impediments in the developing world for sustainable P practices is the lack of studies on P transport and its eventual disposition in the environment. One of these regions with few studies is the Ethiopian Highlands, with permeable volcanic soils. The objective was to establish baseline data on P watershed export in the (sub)humid highlands. Two contrasting watersheds were selected near Lake Tana. For 2 years, stream discharge and sediment, total P, dissolved P, and bioavailable particulate P concentrations were determined at the watershed outlet. The first watershed is the 57 km2 Dangishta, with lava intrusion dikes, forcing subsurface flow through faults to the surface and preventing gully formation. Subsurface flow was half of the 1745 mm annual precipitation, and surface runoff and erosion were minimal. The second watershed is the 9 km2 Robit Bata with 1,420 mm precipitation. The banks of several river banks were slumping. The upper part of the watershed generates saturation excess runoff. A hillslope aquifer in the lower part provided interflow. The average sediment concentrations of 10.5 g L-1 in the stream in Robit Bata (11 times that in Dangishta) reflected the sediments from banks slipping in the stream. The hydrology and the soil loss directly affected the phosphorus export. In Dangishta, the total P concentration averaged 0.5 mg L-1 at the outlet. In Robit Bata, the average total P concentration was 2 mg L-1 . The bioavailable particulate P concentration was only twice the concentration in the runoff water. The low phosphorus content of the subsoil slipping in Robit Bata moderated biologically available particulate P at the outlet. Average dissolved P concentrations for both watersheds were around 0.1 mg L-1 in the low range found in temperate climates. It reflects the difference in length of time that phosphorus fertilizers have been applied. Our research concludes that commonly implemented practices such as strengthening river banks and stabilizing gully might not lead to improved water quality in Lake Tana.

Suggested Citation

  • Sishu, F. K. & Bekele, A. M. & Schmitter, Petra & Tilahun, S. A. & Steenhuis, T. S., 2021. "Phosphorus export from two contrasting rural watersheds in the (sub) humid Ethiopian highlands," Papers published in Journals (Open Access), International Water Management Institute, pages 1-9:762703..
  • Handle: RePEc:iwt:jounls:h050851
    DOI: 10.3389/feart.2021.762703
    as

    Download full text from publisher

    File URL: https://www.frontiersin.org/articles/10.3389/feart.2021.762703/pdf
    Download Restriction: no

    File URL: https://libkey.io/10.3389/feart.2021.762703?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Misbah Abidela Hussein & Habtamu Muche & Petra Schmitter & Prossie Nakawuka & Seifu A. Tilahun & Simon Langan & Jennie Barron & Tammo S. Steenhuis, 2019. "Deep Tillage Improves Degraded Soils in the (Sub) Humid Ethiopian Highlands," Land, MDPI, vol. 8(11), pages 1-15, October.
    2. Hussein, M. A. & Muche, H. & Schmitter, Petra & Nakawuka, P. & Tilahun, S. A. & Langan, Simon & Barron, Jennie & Steenhuis, T. S., 2019. "Deep tillage improves degraded soils in the (sub) humid Ethiopian highlands," Papers published in Journals (Open Access), International Water Management Institute, pages 8(11):1-15..
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saskia Keesstra & Saskia Visser & Margot De Cleen, 2021. "Achieving Land Degradation Neutrality: A Robust Soil System Forms the Basis for Nature-Based Solutions," Land, MDPI, vol. 10(12), pages 1-4, November.
    2. Gotor, E. & Nedumaran, S. & Cenacchi, N. & Tran, N. & Dunston, S. & Dermawan, A. & Wiberg, David & Tesfaye, K. & Mausch, K. & Langan, Simon, 2021. "Land and water systems: looking to the future and a more resilient and sustainable society and environment," IWMI Working Papers H050899, International Water Management Institute.
    3. Snežana Jakšić & Jordana Ninkov & Stanko Milić & Jovica Vasin & Milorad Živanov & Darko Jakšić & Vedrana Komlen, 2021. "Influence of Slope Gradient and Aspect on Soil Organic Carbon Content in the Region of Niš, Serbia," Sustainability, MDPI, vol. 13(15), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iwt:jounls:h050851. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chandima Gunadasa (email available below). General contact details of provider: https://edirc.repec.org/data/iwmiclk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.