IDEAS home Printed from https://ideas.repec.org/a/iwt/jounls/h049656.html
   My bibliography  Save this article

Managed aquifer recharge of monsoon runoff using village ponds: performance assessment of a pilot trial in the Ramganga Basin, India

Author

Listed:
  • Alam, Mohammad Faiz
  • Pavelic, Paul
  • Sharma, Navneet
  • Sikka, Alok

Abstract

The managed aquifer recharge (MAR) of excess monsoonal runoff to mitigate downstream flooding and enhance groundwater storage has received limited attention across the Indo-Gangetic Plain of the Indian subcontinent. Here, we assess the performance of a pilot MAR trial carried out in the Ramganga basin in India. The pilot consisted of a battery of 10 recharge wells, each 24 to 30 m deep, installed in a formerly unused village pond situated adjacent to an irrigation canal that provided river water during the monsoon season. Over three years of pilot testing, volumes ranging from 26,000 to 62,000 m3 were recharged each year over durations ranging from 62 to 85 days. These volumes are equivalent to 1.3–3.6% of the total recharge in the village, and would be sufficient to irrigate 8 to 18 hectares of rabi season crop. High inter-year variation in performance was observed, with yearly average recharge rates ranging from 430 to 775 m3 day-1 (164–295 mm day-1 ) and overall average recharge rates of 580 m3 day-1 (221 mm day-1 ). High intra-year variation was also observed, with recharge rates at the end of recharge period reducing by 72%, 88% and 96% in 2016, 2017 and 2018 respectively, relative to the initial recharge rates. The observed inter- and intra-year variability is due to the groundwater levels that strongly influence gravity recharge heads and lateral groundwater flows, as well as the source water quality, which leads to clogging. The increase in groundwater levels in response to MAR was found to be limited due to the high specific yield and transmissivity of the alluvial aquifer, and, in all but one year, was difficult to distinguish from the overall groundwater level rise due to a range of confounding factors. The results from this study provide the first systematic, multi-year assessment of the performance of pilot-scale MAR harnessing village ponds in the intensively groundwater irrigated, flood prone, alluvial aquifers of the Indo-Gangetic Plain.

Suggested Citation

  • Alam, Mohammad Faiz & Pavelic, Paul & Sharma, Navneet & Sikka, Alok, 2020. "Managed aquifer recharge of monsoon runoff using village ponds: performance assessment of a pilot trial in the Ramganga Basin, India," Papers published in Journals (Open Access), International Water Management Institute, pages 1-12(4):102.
  • Handle: RePEc:iwt:jounls:h049656
    DOI: 10.3390/w12041028
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-4441/12/4/1028/pdf
    Download Restriction: no

    File URL: https://libkey.io/10.3390/w12041028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Glendenning, C.J. & Vervoort, R.W., 2010. "Hydrological impacts of rainwater harvesting (RWH) in a case study catchment: The Arvari River, Rajasthan, India. Part 1: Field-scale impacts," Agricultural Water Management, Elsevier, vol. 98(2), pages 331-342, December.
    2. Prathapar, S. & Dhar, S. & Rao, G. Tamma & Maheshwari, B., 2015. "Performance and impacts of managed aquifer recharge interventions for agricultural water security: A framework for evaluation," Agricultural Water Management, Elsevier, vol. 159(C), pages 165-175.
    3. Paul Pavelic & Brindha Karthikeyan & Giriraj Amarnath & Nishadi Eriyagama & Lal Muthuwatta & Vladimir Smakhtin & Prasun K. Gangopadhyay & Ravinder Paul Singh Malik & Atmaram Mishra & Bharat R. Sharma , 2015. "Controlling floods and droughts through underground storage: from concept to pilot implementation in the Ganges River Basin (IWMI Research Report 165)," IWMI Research Reports H047460, International Water Management Institute.
    4. Glendenning, C.J. & van Ogtrop, F.F. & Mishra, A.K. & Vervoort, R.W., 2012. "Balancing watershed and local scale impacts of rain water harvesting in India—A review," Agricultural Water Management, Elsevier, vol. 107(C), pages 1-13.
    5. Giordano, Mark & Villholth, Karen, 2007. "The agricultural groundwater revolution: opportunities and threats to development," IWMI Books, Reports H040039, International Water Management Institute.
    6. Sakthivadivel, R., 2007. "The groundwater recharge movement in India," IWMI Books, Reports H040048, International Water Management Institute.
    7. Mahfuzur Khan & Clifford Voss & Winston Yu & Holly Michael, 2014. "Water Resources Management in the Ganges Basin: A Comparison of Three Strategies for Conjunctive Use of Groundwater and Surface Water," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1235-1250, March.
    8. Alam, Mohammad Faiz & Pavelic, Paul, 2020. "Underground Transfer of Floods for Irrigation (UTFI): exploring potential at the global scale," IWMI Research Reports H050008, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Silvia Barbetta & Bianca Bonaccorsi & Stavroula Tsitsifli & Ivana Boljat & Papakonstantinou Argiris & Jasmina Lukač Reberski & Christian Massari & Emanuele Romano, 2022. "Assessment of Flooding Impact on Water Supply Systems: A Comprehensive Approach Based on DSS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5443-5459, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prathapar, S. & Dhar, S. & Rao, G. Tamma & Maheshwari, B., 2015. "Performance and impacts of managed aquifer recharge interventions for agricultural water security: A framework for evaluation," Agricultural Water Management, Elsevier, vol. 159(C), pages 165-175.
    2. Amarasinghe, Upali A. & Muthuwatta, Lal & Smakhtin, Vladimir & Surinaidu, Lagudu & Natarajan, R. & Chinnasamy, Pennan & Kakumanu, Krishna Reddy & Prathapar, Sanmugam A. & Jain, S. K. & Ghosh, N. C. & , 2016. "Reviving the Ganges water machine: potential and challenges to meet increasing water demand in the Ganges River Basin," IWMI Reports 246417, International Water Management Institute.
    3. Alam, Mohammad Faiz & Pavelic, Paul, 2020. "Underground Transfer of Floods for Irrigation (UTFI): exploring potential at the global scale," IWMI Research Reports H050008, International Water Management Institute.
    4. Glendenning, C.J. & van Ogtrop, F.F. & Mishra, A.K. & Vervoort, R.W., 2012. "Balancing watershed and local scale impacts of rain water harvesting in India—A review," Agricultural Water Management, Elsevier, vol. 107(C), pages 1-13.
    5. Anantha, K.H. & Garg, Kaushal K. & Barron, Jennie & Dixit, Sreenath & Venkataradha, A. & Singh, Ramesh & Whitbread, Anthony M., 2021. "Impact of best management practices on sustainable crop production and climate resilience in smallholder farming systems of South Asia," Agricultural Systems, Elsevier, vol. 194(C).
    6. Glendenning, C.J. & Vervoort, R.W., 2011. "Hydrological impacts of rainwater harvesting (RWH) in a case study catchment: The Arvari River, Rajasthan, India: Part 2. Catchment-scale impacts," Agricultural Water Management, Elsevier, vol. 98(4), pages 715-730, February.
    7. Villholth, Karen, 2015. "Groundwater for food production and livelihoods - the nexus with climate change and transboundary water management," Book Chapters,, International Water Management Institute.
    8. Upali A. Amarasinghe & Tushaar Shah & Peter G. McCornick, 2008. "Seeking calm water: Exploring policy options for India's water future," Natural Resources Forum, Blackwell Publishing, vol. 32(4), pages 305-315, November.
    9. Glendenning, C.J. & Vervoort, R.W., 2010. "Hydrological impacts of rainwater harvesting (RWH) in a case study catchment: The Arvari River, Rajasthan, India. Part 1: Field-scale impacts," Agricultural Water Management, Elsevier, vol. 98(2), pages 331-342, December.
    10. Falk, Thomas & Kumar, Shalander & Srigiri, Srinivasa, 2019. "Experimental games for developing institutional capacity to manage common water infrastructure in India," Agricultural Water Management, Elsevier, vol. 221(C), pages 260-269.
    11. Deora, Shashank & Nanore, Gyanesh, 2019. "Socio economic impacts of Doha Model water harvesting structures in Jalna, Maharashtra," Agricultural Water Management, Elsevier, vol. 221(C), pages 141-149.
    12. Dennis Wichelns, 2015. "Achieving Water and Food Security in 2050: Outlook, Policies, and Investments," Agriculture, MDPI, vol. 5(2), pages 1-33, April.
    13. Babel, Mukand S. & Chawrua, Lapanploy & Khadka, Dibesh & Tingsanchali, Tawatchai & Shanmungam, Mohana Sundaram, 2024. "Agricultural drought risk and local adaptation measures in the Upper Mun River Basin, Thailand," Agricultural Water Management, Elsevier, vol. 292(C).
    14. CGIAR Research Program on Water, Land and Ecosystems, 2015. "Groundwater and ecosystem services: a framework for managing smallholder groundwater-dependent agrarian socio-ecologies - applying an ecosystem services and resilience approach," IWMI Books, International Water Management Institute, number 208414.
    15. Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014. "Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data," Economic Analysis and Policy, Elsevier, vol. 44(1), pages 51-64.
    16. Stergios Athanassoglou & Glenn Sheriff & Tobias Siegfried & Woonghee Huh, 2012. "Optimal Mechanisms for Heterogeneous Multi-Cell Aquifers," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 52(2), pages 265-291, June.
    17. Jean L. Steiner & David D. Briske & David P. Brown & Caitlin M. Rottler, 2018. "Vulnerability of Southern Plains agriculture to climate change," Climatic Change, Springer, vol. 146(1), pages 201-218, January.
    18. Buchholz, Matthias & Musshoff, Oliver, 2014. "The role of weather derivatives and portfolio effects in agricultural water management," Agricultural Water Management, Elsevier, vol. 146(C), pages 34-44.
    19. Mukherji, A. & Das, B. & Majumdar, N. & Nayak, N.C. & Sethi, R.R. & Sharma, B.R., 2009. "Metering of agricultural power supply in West Bengal, India: Who gains and who loses?," Energy Policy, Elsevier, vol. 37(12), pages 5530-5539, December.
    20. Shilp Verma & Manisha Shah, 2019. "Drought-Proofing through Groundwater Recharge," World Bank Publications - Reports 33240, The World Bank Group.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iwt:jounls:h049656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chandima Gunadasa (email available below). General contact details of provider: https://edirc.repec.org/data/iwmiclk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.