IDEAS home Printed from https://ideas.repec.org/a/iwt/jounls/h049051.html
   My bibliography  Save this article

Complex interactions between climate change, sanitation, and groundwater quality: a case study from Ramotswa, Botswana

Author

Listed:
  • McGill, B. M.
  • Altchenko, Yvan
  • Hamilton, S. K.
  • Kenabatho, P. K.
  • Sylvester, S. R.
  • Villholth, Karen G.

Abstract

Groundwater quantity and quality may be affected by climate change through intricate direct and indirect mechanisms. At the same time, population growth and rapid urbanization have made groundwater an increasingly important source of water for multiple uses around the world, including southern Africa. The present study investigates the coupled human and natural system (CHANS) linking climate, sanitation, and groundwater quality in Ramotswa, a rapidly growing peri-urban area in the semi-arid southeastern Botswana, which relies on the transboundary Ramotswa aquifer for water supply. Analysis of long-term rainfall records indicated that droughts like the one in 2013–2016 are increasing in likelihood in the area due to climate change. Key informant interviews showed that due to the drought, people increasingly used pit latrines rather than flush toilets. Nitrate, fecal coliforms, and caffeine analyses of Ramotswa groundwater revealed that human waste leaching from pit latrines is the likely source of nitrate pollution. The results in conjunction indicate critical indirect linkages between climate change, sanitation, groundwater quality, and water security in the area. Improved sanitation, groundwater protection and remediation, and local water treatment would enhance reliable access to water, de-couple the community from reliance on surface water and associated water shortage risks, and help prevent transboundary tension over the shared aquifer.

Suggested Citation

  • McGill, B. M. & Altchenko, Yvan & Hamilton, S. K. & Kenabatho, P. K. & Sylvester, S. R. & Villholth, Karen G., 2019. "Complex interactions between climate change, sanitation, and groundwater quality: a case study from Ramotswa, Botswana," Papers published in Journals (Open Access), International Water Management Institute, pages 27(3):997-1.
  • Handle: RePEc:iwt:jounls:h049051
    DOI: 10.1007/s10040-018-1901-4
    as

    Download full text from publisher

    File URL: https://link.springer.com/content/pdf/10.1007%2Fs10040-018-1901-4.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.1007/s10040-018-1901-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dąbrowska Dominika & Rykała Wojciech & Nourani Vahid, 2023. "The impact of weather conditions on the quality of groundwater in the area of a municipal waste landfill," Environmental & Socio-economic Studies, Sciendo, vol. 11(3), pages 14-21, September.
    2. Botlhe Matlhodi & Piet K. Kenabatho & Bhagabat P. Parida & Joyce G. Maphanyane, 2019. "Evaluating Land Use and Land Cover Change in the Gaborone Dam Catchment, Botswana, from 1984–2015 Using GIS and Remote Sensing," Sustainability, MDPI, vol. 11(19), pages 1-21, September.
    3. Jian Sun & Baizhong Yan & Yao Li & Huixiao Sun & Yahui Wang & Jiaqi Chen, 2021. "Characterization and Cause Analysis of Shallow Groundwater Hydrochemistry in the Plains of Henan Province, China," Sustainability, MDPI, vol. 13(22), pages 1-19, November.
    4. Kutlwano Makwatse & Leatile Modie & Morati Mpalo & Caitlin Blaser Mapitsa, 2022. "Gender and Equity Considerations for Building Climate Resilience: Lessons from Rural and Periurban Botswana," Sustainability, MDPI, vol. 14(17), pages 1-14, August.
    5. Riwaz Kumar Adhikari & Abdullah Gokhan Yilmaz & Bandita Mainali & Phil Dyson & Monzur Alam Imteaz, 2022. "Methods of Groundwater Recharge Estimation under Climate Change: A Review," Sustainability, MDPI, vol. 14(23), pages 1-19, November.

    More about this item

    Keywords

    Climate change;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iwt:jounls:h049051. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chandima Gunadasa (email available below). General contact details of provider: https://edirc.repec.org/data/iwmiclk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.