IDEAS home Printed from https://ideas.repec.org/a/isa/journl/v17y2015i1p55-78.html
   My bibliography  Save this article

The seasonal adjustment of quarterly service turnover indices

Author

Listed:
  • Barbara Iaconelli

    (Italian National Institute of Statistics)

  • Fabio Bacchini

    (Italian National Institute of Statistics)

  • Maria Giulia Ippoliti

    (Italian National Institute of Statistics)

  • Barbara Guardabascio

    (Italian National Institute of Statistics)

  • Roberto Iannaccone

    (Italian National Institute of Statistics)

Abstract

In the last years Istat has increased information in the short-term statistics domain for the ser- vice sector. Until 2010 quarterly service turnover indices were published only in unadjusted form. The time span available made the estimation of seasonally adjusted indicators feasible. However the change in the economic classification, that was relevant especially in the ser- vice sector, has raised significant methodological issues in the determination of the seasonal component, as for example the presence of seasonal level shift. Although Istat’ strategy for seasonal adjustment is based on TRAMO-SEATS procedure, in this work different diagnos- tics useful to provide empirical evidences on seasonal outliers detection are exploited. In more detail, the TRAMO-SEATS framework was integrated with X12-ARIMA diagnostic on seasonal outliers by applying the Demetra + procedure that combines TRAMO-SEATS and X12-ARIMA procedures in a unique framework.

Suggested Citation

  • Barbara Iaconelli & Fabio Bacchini & Maria Giulia Ippoliti & Barbara Guardabascio & Roberto Iannaccone, 2015. "The seasonal adjustment of quarterly service turnover indices," Rivista di statistica ufficiale, ISTAT - Italian National Institute of Statistics - (Rome, ITALY), vol. 17(1), pages 55-78.
  • Handle: RePEc:isa:journl:v:17:y:2015:i:1:p:55-78
    as

    Download full text from publisher

    File URL: http://www.istat.it/it/files/2015/05/Art.3-Seasonal-adjustment-quarterly-service-turnover-indices.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Findley, David F, et al, 1998. "New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 127-152, April.
    2. Fabio Bacchini & Giuseppe Busanello & Diego Chianella & Rosmarie D. Cinelli & Roberto Iannaccone & Valeria Quondamstefano, 2015. "Recent developments for quarterly service turnover indices," Rivista di statistica ufficiale, ISTAT - Italian National Institute of Statistics - (Rome, ITALY), vol. 17(1), pages 21-53.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giancarlo Bruno & Edoardo Otranto, 2006. "The choice of time interval in seasonal adjustment: A heuristic approach," Statistical Papers, Springer, vol. 47(3), pages 393-417, June.
    2. Mauricio Gallardo & Hernán Rubio, 2009. "Diagnóstico de estacionalidad con X-12-ARIMA," Economic Statistics Series 76, Central Bank of Chile.
    3. Simone Elmer & Thomas Maag, 2009. "The Persistence of Inflation in Switzerland," KOF Working papers 09-235, KOF Swiss Economic Institute, ETH Zurich.
    4. Hall, Viv B & Thomson, Peter, 2022. "A boosted HP filter for business cycle analysis: evidence from New Zealand’s small open economy," Working Paper Series 9473, Victoria University of Wellington, School of Economics and Finance.
    5. Kroes, James R. & Manikas, Andrew S. & Gattiker, Thomas F., 2018. "Operational leanness and retail firm performance since 1980," International Journal of Production Economics, Elsevier, vol. 197(C), pages 262-274.
    6. Quenneville, Benoit & Ladiray, Dominique & Lefrancois, Bernard, 2003. "A note on Musgrave asymmetrical trend-cycle filters," International Journal of Forecasting, Elsevier, vol. 19(4), pages 727-734.
    7. Massmann, Michael & Mitchell, James, 2003. "Reconsidering the evidence: Are Eurozone business cycles converging," ZEI Working Papers B 05-2003, University of Bonn, ZEI - Center for European Integration Studies.
    8. Dagum, Estela Bee, 2010. "Business Cycles and Current Economic Analysis/Los ciclos económicos y el análisis económico actual," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 28, pages 577-594, Diciembre.
    9. Regina Kaiser & Agustín Maravall, 2000. "Notes on Time Series Analysis, ARIMA Models and Signal Extraction," Working Papers 0012, Banco de España.
    10. Fang Han & Fei Zhao & Fuxing Li & Xiaoli Shi & Qiang Wei & Weimiao Li & Wei Wang, 2023. "Improvement of Monitoring Production Status of Iron and Steel Factories Based on Thermal Infrared Remote Sensing," Sustainability, MDPI, vol. 15(11), pages 1-17, May.
    11. Hai Yue Liu & Xiao Lan Chen, 2017. "The imported price, inflation and exchange rate pass-through in China," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1279814-127, January.
    12. Alexander Dokumentov & Rob J. Hyndman, 2022. "STR: Seasonal-Trend Decomposition Using Regression," INFORMS Joural on Data Science, INFORMS, vol. 1(1), pages 50-62, April.
    13. Henryk Gurgul & Marcin Suder, 2013. "The Properties of ATMs Development Stages - an Empirical Analysis," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 14(3), pages 443-466, September.
    14. Marcus Cobb & Maribel Jara, 2013. "Ajuste estacional de series macroeconómicas chilenas," Economic Statistics Series 98, Central Bank of Chile.
    15. Carlos A. Medel, 2018. "A Comparison Between Direct and Indirect Seasonal Adjustment of the Chilean GDP 1986–2009 with X-12-ARIMA," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 14(1), pages 47-87, April.
    16. Stefania D'Amico & Athanasios Orphanides, 2008. "Uncertainty and disagreement in economic forecasting," Finance and Economics Discussion Series 2008-56, Board of Governors of the Federal Reserve System (U.S.).
    17. Kirchner, Robert, 1999. "Auswirkungen des neuen Saisonbereinigungsverfahrens Census X-12-ARIMA auf die aktuelle Wirtschaftsanalyse in Deutschland," Discussion Paper Series 1: Economic Studies 1999,07, Deutsche Bundesbank.
    18. repec:wyi:journl:002126 is not listed on IDEAS
    19. M. Angeles Carnero & Siem Jan Koopman & Marius Ooms, 2003. "Periodic Heteroskedastic RegARFIMA Models for Daily Electricity Spot Prices," Tinbergen Institute Discussion Papers 03-071/4, Tinbergen Institute.
    20. Flávio de Freitas Val & Wagner Piazza Gaglianone & Marcelo Cabus Klotzle & Antonio Carlos Figueiredo Pinto, 2017. "Estimating the Credibility of Brazilian Monetary Policy using Forward Measures and a State-Space Model," Working Papers Series 463, Central Bank of Brazil, Research Department.
    21. Viv B. Hall & Peter Thomson, 2021. "Does Hamilton’s OLS Regression Provide a “better alternative” to the Hodrick-Prescott Filter? A New Zealand Business Cycle Perspective," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(2), pages 151-183, November.

    More about this item

    Keywords

    Seasonal adjustment; Demetra +; Service Turnover; Seasonal Break.;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation
    • L80 - Industrial Organization - - Industry Studies: Services - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:isa:journl:v:17:y:2015:i:1:p:55-78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stefania Rossetti (email available below). General contact details of provider: https://edirc.repec.org/data/istgvit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.