Author
Listed:
- Yiming Yan
(School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore)
- Xi Lin
(Department of Industrial Engineering and Department of Civil Engineering, Tsinghua University, Beijing 100084, P.R. China)
- Fang He
(Department of Industrial Engineering, Tsinghua University, Beijing 100084, P.R. China)
- David Z. W. Wang
(School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore)
Abstract
This paper investigates the operation of a novel electric vehicles (EVs) charging service mode, that is, crowdsourced mobile charging service for EVs, whereby a crowdsourcing platform is established to arrange suppliers (crowdsourced chargers) to deliver charging service to customers’ electric vehicles (parked EVs) at low-battery levels. From the platform operator’s perspective, we aim to determine the optimal operation strategies for mobile charging crowdsourcing platforms to achieve specific objectives. A mathematical modeling framework is developed to capture the interactions among supply, demand, and service operations in the crowdsourced mobile charging market. To design an efficient solution method to solve the formulated model, we first analyze the model properties by rigorously proving that a crucial variable set for operating the mobile charging crowdsourcing system includes charging price, commission control, and period-specific aggregate demand control. Besides, we provide both an equivalent condition and a necessary condition for checking the feasibility of these crucial variables. On top of this, we construct a search tree according to the operation periods in a day to solve the optimal operation strategies, wherein a nondominated principle is adopted as an accelerating technique in the searching process. The solution obtained from the proposed solution algorithm is proved to be sufficiently close to the actual global optimal solutions of the formulated model up to the resolution of the discretization scheme adopted. Numerical examples provide evidence verifying the model’s validity and the solution method’s efficiency. Overall, the research outcome of this work can offer service operators structured and valuable guidelines for operating mobile charging crowdsourcing platforms.
Suggested Citation
Yiming Yan & Xi Lin & Fang He & David Z. W. Wang, 2024.
"Dynamic Operations of a Mobile Charging Crowdsourcing Platform,"
Transportation Science, INFORMS, vol. 58(5), pages 995-1015, September.
Handle:
RePEc:inm:ortrsc:v:58:y:2024:i:5:p:995-1015
DOI: 10.1287/trsc.2023.0126
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:58:y:2024:i:5:p:995-1015. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.