Author
Listed:
- Sara Reed
(School of Business, University of Kansas, Lawrence, Kansas 66045)
- Ann Melissa Campbell
(Department of Business Analytics, Tippie College of Business, University of Iowa, Iowa City, Iowa 52242)
- Barrett W. Thomas
(Department of Business Analytics, Tippie College of Business, University of Iowa, Iowa City, Iowa 52242)
Abstract
We seek to determine in what geographies autonomous vehicle assisted delivery is most valuable for last-mile delivery. To build insights across urban-to-rural settings, we conduct a case study by generating test instances that reflect real-world geographies. We integrate real-world data for these instances, including driving and walking times, as well as obstacles, such as one-way streets, and their impact on last-mile delivery. We model the capacitated autonomous vehicle assisted delivery problem as an integer program on a general graph. To solve this model on realistically sized instances, we exploit the structure of the optimal solution to develop a number of preprocessing techniques to reduce the large number of variables present in the generic problem. We also introduce valid inequalities that raise the lower bound and reduce the size of the branch-and-bound tree. Autonomous vehicle assisted delivery reduces the completion time of the delivery tour and provides the most cost-effective business model in all customer geographies. In particular, a delivery person saves more time in urban environments than in rural environments. These savings are the result of both a reduction in the time to park but also in the amount of walking that the delivery person does. This increased productivity could reduce fleet size and ultimately the number of vehicles on the road. These conclusions support businesses with urban deliveries considering investment in this technology. However, higher savings in rural environments may be achieved by reducing the loading time.
Suggested Citation
Sara Reed & Ann Melissa Campbell & Barrett W. Thomas, 2022.
"Impact of Autonomous Vehicle Assisted Last-Mile Delivery in Urban to Rural Settings,"
Transportation Science, INFORMS, vol. 56(6), pages 1530-1548, November.
Handle:
RePEc:inm:ortrsc:v:56:y:2022:i:6:p:1530-1548
DOI: 10.1287/trsc.2022.1142
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:56:y:2022:i:6:p:1530-1548. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.