IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v30y1996i1p32-42.html
   My bibliography  Save this article

Non-Convex Traffic Assignment on a Rectangular Grid Network

Author

Listed:
  • G. F. Newell

    (Institute of Transportation Studies, University of California, Berkeley, California 94720)

Abstract

We consider here an idealized infinite rectangular grid of roads with a translationally symmetric O-D distribution. The total cost of travel on all links approaching each junction is approximated by a quadratic function of the four flows N, S, E, and W at that junction. If any of the four eigenvalues of this quadratic form is negative, the system optimal assignment problem is non-convex. If there are economies of scale (due possibly to construction costs) then all eigenvalues could be negative and the optimal assignment will lead to a hierarchical type of flow distribution (city streets, arterials, freeways, etc.). If costs arise only from congestion, however, it is possible that one or more of the eigenvalues is negative particularly if the cost of travel N, for example, is more sensitive to the flows E and/or W than to the flow N, or is more sensitive to the flow S than N. If it is more sensitive to the flow E-W an efficient assignment would seem to be one in which the space is divided into subregions such that in certain subregions traffic will be predominantly N or S and in other subregions it is predominately E or W. The optimal assignment is expected to be highly unstable to changes in the O-D distribution. If it is more sensitive to the flow S, a user optimal assignment may be stable and translationally symmetric but not the system optimal. The conclusion is that a non-convex assignment problem is not only a computational nightmare, but may be inconsistent with social objective or impractical to implement.

Suggested Citation

  • G. F. Newell, 1996. "Non-Convex Traffic Assignment on a Rectangular Grid Network," Transportation Science, INFORMS, vol. 30(1), pages 32-42, February.
  • Handle: RePEc:inm:ortrsc:v:30:y:1996:i:1:p:32-42
    DOI: 10.1287/trsc.30.1.32
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.30.1.32
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.30.1.32?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:30:y:1996:i:1:p:32-42. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.