IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v24y1990i3p169-182.html
   My bibliography  Save this article

Fleet Size Planning when Outside Carrier Services Are Available

Author

Listed:
  • John G. Klincewicz

    (AT&T Bell Laboratories, Holmdel, New Jersey 07733)

  • Hanan Luss

    (AT&T Bell Laboratories, Holmdel, New Jersey 07733)

  • Martha G. Pilcher

    (University of Washington, Seattle, Washington 98195)

Abstract

The delivery of goods from a warehouse to local customers is a critical aspect of a material logistics system. A strategic decision must be made periodically (e.g., once a year) whether to maintain a private delivery fleet, to employ outside commercial carrier services, or to use a combination of both options. We seek to develop a methodology to address this long range planning decision. Our model considers a geographic area, with random daily demands, served by a single warehouse. The costs considered include the fixed and variable (per mile) costs of a private vehicle and the outside carriers' delivery charges. A private vehicle is constrained by the length of the work-day, since it returns to the warehouse only after completing all its deliveries. Since actual customer locations change from day to day, for planning purposes we divide the geographic area into sectors and decide how best to serve each sector. The model determines the private fleet size and the specific assignment of each sector to a private vehicle or to an outside carrier. The centerpiece of our solution approach consists of a single-source capacitated facility location formulation, in which each “customer” (sector) is served by a single “facility” (private vehicle or outside carrier). Computational results are reported.

Suggested Citation

  • John G. Klincewicz & Hanan Luss & Martha G. Pilcher, 1990. "Fleet Size Planning when Outside Carrier Services Are Available," Transportation Science, INFORMS, vol. 24(3), pages 169-182, August.
  • Handle: RePEc:inm:ortrsc:v:24:y:1990:i:3:p:169-182
    DOI: 10.1287/trsc.24.3.169
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.24.3.169
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.24.3.169?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Holmberg, Kaj & Ronnqvist, Mikael & Yuan, Di, 1999. "An exact algorithm for the capacitated facility location problems with single sourcing," European Journal of Operational Research, Elsevier, vol. 113(3), pages 544-559, March.
    2. Ansari, Sina & Başdere, Mehmet & Li, Xiaopeng & Ouyang, Yanfeng & Smilowitz, Karen, 2018. "Advancements in continuous approximation models for logistics and transportation systems: 1996–2016," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 229-252.
    3. Ziebuhr, Mario & Kopfer, Herbert, 2016. "Solving an integrated operational transportation planning problem with forwarding limitations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 149-166.
    4. Wu, Peiling & Hartman, Joseph C. & Wilson, George R., 2003. "A demand-shifting feasibility algorithm for Benders decomposition," European Journal of Operational Research, Elsevier, vol. 148(3), pages 570-583, August.
    5. Ronnqvist, Mikael & Tragantalerngsak, Suda & Holt, John, 1999. "A repeated matching heuristic for the single-source capacitated facility location problem," European Journal of Operational Research, Elsevier, vol. 116(1), pages 51-68, July.
    6. Chu, Ching-Wu, 2005. "A heuristic algorithm for the truckload and less-than-truckload problem," European Journal of Operational Research, Elsevier, vol. 165(3), pages 657-667, September.
    7. Wang, Xin & Kopfer, Herbert & Gendreau, Michel, 2014. "Operational transportation planning of freight forwarding companies in horizontal coalitions," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1133-1141.
    8. Gahm, Christian & Brabänder, Christian & Tuma, Axel, 2017. "Vehicle routing with private fleet, multiple common carriers offering volume discounts, and rental options," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 97(C), pages 192-216.
    9. Anna Franceschetti & Ola Jabali & Gilbert Laporte, 2017. "Continuous approximation models in freight distribution management," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 413-433, October.
    10. Bolduc, Marie-Claude & Renaud, Jacques & Boctor, Fayez, 2007. "A heuristic for the routing and carrier selection problem," European Journal of Operational Research, Elsevier, vol. 183(2), pages 926-932, December.
    11. Peiling Wu & Joseph C. Hartman & George R. Wilson, 2005. "An Integrated Model and Solution Approach for Fleet Sizing with Heterogeneous Assets," Transportation Science, INFORMS, vol. 39(1), pages 87-103, February.
    12. M-C Bolduc & J Renaud & F Boctor & G Laporte, 2008. "A perturbation metaheuristic for the vehicle routing problem with private fleet and common carriers," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(6), pages 776-787, June.
    13. Mohamed Amjath & Laoucine Kerbache & James MacGregor Smith, 2024. "A Closed Queueing Networks Approach for an Optimal Heterogeneous Fleet Size of an Inter-Facility Bulk Material Transfer System," Logistics, MDPI, vol. 8(1), pages 1-38, March.
    14. Tragantalerngsak, Suda & Holt, John & Ronnqvist, Mikael, 1997. "Lagrangian heuristics for the two-echelon, single-source, capacitated facility location problem," European Journal of Operational Research, Elsevier, vol. 102(3), pages 611-625, November.
    15. Côté, Jean-François & Potvin, Jean-Yves, 2009. "A tabu search heuristic for the vehicle routing problem with private fleet and common carrier," European Journal of Operational Research, Elsevier, vol. 198(2), pages 464-469, October.
    16. Taha Hossein Rashidi & Matthew J. Roorda, 2018. "A business establishment fleet ownership and composition model," Transportation, Springer, vol. 45(3), pages 971-987, May.
    17. Langevin, André & Mbaraga, Pontien & Campbell, James F., 1996. "Continuous approximation models in freight distribution: An overview," Transportation Research Part B: Methodological, Elsevier, vol. 30(3), pages 163-188, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:24:y:1990:i:3:p:169-182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.