IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v15y1981i4p306-317.html
   My bibliography  Save this article

Efficient Algorithms for Solving Elastic Demand Traffic Assignment Problems and Mode Split-Assignment Problems

Author

Listed:
  • Larry J. LeBlanc

    (Vanderbilt University, Nashville, Tennessee)

  • Keyvan Farhangian

    (Southern Methodist University, Dallas, Texas)

Abstract

Different algorithms for solving elastic demand traffic assignment problems and mode split-assignment problems are discussed. We note that there are different ways to implement the Frank-Wolfe technique to solve these problems and give the most efficient implementation. We then discuss Evans' procedure and compare it with the Frank-Wolfe technique. Computational results indicate that the Frank-Wolfe algorithm is unstable for the elastic assignment problem---its rate of convergence is very sensitive to values used for upper bounds on trips, which are purely artificial “tuning parameters.” Evans' algorithm is found to be more robust and to converge consistently faster than the Frank-Wolfe technique for both classes of problems studied.

Suggested Citation

  • Larry J. LeBlanc & Keyvan Farhangian, 1981. "Efficient Algorithms for Solving Elastic Demand Traffic Assignment Problems and Mode Split-Assignment Problems," Transportation Science, INFORMS, vol. 15(4), pages 306-317, November.
  • Handle: RePEc:inm:ortrsc:v:15:y:1981:i:4:p:306-317
    DOI: 10.1287/trsc.15.4.306
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.15.4.306
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.15.4.306?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. García, Ricardo & Marín, Angel, 2005. "Network equilibrium with combined modes: models and solution algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 39(3), pages 223-254, March.
    2. Chen, Anthony & Choi, Keechoo, 2017. "Solving the combined modal split and traffic assignment problem with two types of transit impedance functionAuthor-Name: Ryu, Seungkyu," European Journal of Operational Research, Elsevier, vol. 257(3), pages 870-880.
    3. Kitthamkesorn, Songyot & Chen, Anthony, 2017. "Alternate weibit-based model for assessing green transport systems with combined mode and route travel choices," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 291-310.
    4. Cantarella, Giulio Erberto & Cartenì, Armando & de Luca, Stefano, 2015. "Stochastic equilibrium assignment with variable demand: Theoretical and implementation issues," European Journal of Operational Research, Elsevier, vol. 241(2), pages 330-347.
    5. Mori, Kentaro & Miwa, Tomio & Abe, Ryosuke & Morikawa, Takayuki, 2022. "Equilibrium analysis of trip demand for autonomous taxi services in Nagoya, Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 476-498.
    6. D E Boyce, 1984. "Urban Transportation Network-Equilibrium and Design Models: Recent Achievements and Future Prospects," Environment and Planning A, , vol. 16(11), pages 1445-1474, November.
    7. Xu, Meng & Chen, Anthony & Gao, Ziyou, 2008. "An improved origin-based algorithm for solving the combined distribution and assignment problem," European Journal of Operational Research, Elsevier, vol. 188(2), pages 354-369, July.
    8. Lam, William H. K. & Tam, M. L., 1997. "Why standard modelling and evaluation procedures are inadequate for assessing traffic congestion measures," Transport Policy, Elsevier, vol. 4(4), pages 217-223, October.
    9. D E Boyce & K S Chon & Y J Lee & K T Lin & L J LeBlanc, 1983. "Implementation and Computational Issues for Combined Models of Location, Destination, Mode, and Route Choice," Environment and Planning A, , vol. 15(9), pages 1219-1230, September.
    10. Codina, Esteve & Barcelo, Jaume, 2004. "Adjustment of O-D trip matrices from observed volumes: An algorithmic approach based on conjugate directions," European Journal of Operational Research, Elsevier, vol. 155(3), pages 535-557, June.
    11. W Rothengatter, 1986. "Scheduling of Interstate Road and Railway Investments," Environment and Planning A, , vol. 18(4), pages 465-483, April.
    12. Jian Wang & Muqing Du & Lili Lu & Xiaozheng He, 2018. "Maximizing Network Throughput under Stochastic User Equilibrium with Elastic Demand," Networks and Spatial Economics, Springer, vol. 18(1), pages 115-143, March.
    13. David Boyce, 2007. "Forecasting Travel on Congested Urban Transportation Networks: Review and Prospects for Network Equilibrium Models," Networks and Spatial Economics, Springer, vol. 7(2), pages 99-128, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:15:y:1981:i:4:p:306-317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.