IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v14y1980i4p295-305.html
   My bibliography  Save this article

A Successive Linear Optimization Approach to the Dynamic Traffic Assignment Problem

Author

Listed:
  • James K. Ho

    (Brookhaven National Laboratory, Upton, New York)

Abstract

A dynamic model for the optimal control of traffic flow over a network is considered. The model, which treats congestion explicitly in the flow equations, gives rise to nonlinear, nonconvex mathematical programming problems. It has been shown for a piecewise linear version of this model that a global optimum is contained in the set of optimal solutions of a certain linear program. This paper presents a sufficient condition for optimality which implies that a global optimum can be obtained by successively optimizing at most N + 1 objective functions for the linear program, where N is the number of time periods in the planning horizon. Computational results are reported to indicate the efficiency of this approach.

Suggested Citation

  • James K. Ho, 1980. "A Successive Linear Optimization Approach to the Dynamic Traffic Assignment Problem," Transportation Science, INFORMS, vol. 14(4), pages 295-305, November.
  • Handle: RePEc:inm:ortrsc:v:14:y:1980:i:4:p:295-305
    DOI: 10.1287/trsc.14.4.295
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.14.4.295
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.14.4.295?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anthony G O Yeh & P C Lai & S C Wong & Nelson H C Yung, 2004. "The Architecture for a Real-Time Traffic Multimedia Internet Geographic Information System," Environment and Planning B, , vol. 31(3), pages 349-366, June.
    2. Zhu, Feng & Ukkusuri, Satish V., 2017. "Efficient and fair system states in dynamic transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 272-289.
    3. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    4. Jiancheng Long & Wai Yuen Szeto, 2019. "Link-Based System Optimum Dynamic Traffic Assignment Problems in General Networks," Operations Research, INFORMS, vol. 67(1), pages 167-182, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:14:y:1980:i:4:p:295-305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.