IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v14y1980i1p1-8.html
   My bibliography  Save this article

A Simple Approach to Linear Facility Location

Author

Listed:
  • James G. Morris

    (University of Wisconsin-Madison, Madison, Wisconsin)

  • John P. Norback

    (University of Wisconsin-Madison, Madison, Wisconsin)

Abstract

A linear facility is to be located to minimize weighted shortest distances from demand points to the facility. This paper reports on a naive but effective approach. The approach is simple to understand and computer implementation is straightforward. A graphical version may also be used. The approach generalizes to models with more elaborate cost structures than simple proportionality to distance. The analysis addresses uniqueness issues and characterizes the line with respect to other notions of best linear fits.

Suggested Citation

  • James G. Morris & John P. Norback, 1980. "A Simple Approach to Linear Facility Location," Transportation Science, INFORMS, vol. 14(1), pages 1-8, February.
  • Handle: RePEc:inm:ortrsc:v:14:y:1980:i:1:p:1-8
    DOI: 10.1287/trsc.14.1.1
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.14.1.1
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.14.1.1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandro Agnetis & Pitu B. Mirchandani & Andrea Pacifici, 2002. "Partitioning of biweighted trees," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(2), pages 143-158, March.
    2. Jianping Li & Suding Liu & Junran Lichen & Wencheng Wang & Yujie Zheng, 2020. "Approximation algorithms for solving the 1-line Euclidean minimum Steiner tree problem," Journal of Combinatorial Optimization, Springer, vol. 39(2), pages 492-508, February.
    3. Blanquero, Rafael & Carrizosa, Emilio & Schöbel, Anita & Scholz, Daniel, 2011. "A global optimization procedure for the location of a median line in the three-dimensional space," European Journal of Operational Research, Elsevier, vol. 215(1), pages 14-20, November.
    4. Diaz-Banez, J. M. & Mesa, J. A. & Schobel, A., 2004. "Continuous location of dimensional structures," European Journal of Operational Research, Elsevier, vol. 152(1), pages 22-44, January.
    5. Jack Brimberg & Henrik Juel & Anita Schöbel, 2007. "Locating a Circle on a Sphere," Operations Research, INFORMS, vol. 55(4), pages 782-791, August.
    6. Schobel, Anita, 1998. "Locating least-distant lines in the plane," European Journal of Operational Research, Elsevier, vol. 106(1), pages 152-159, April.
    7. Jianping Li & Junran Lichen & Wencheng Wang & Jean Yeh & YeongNan Yeh & Xingxing Yu & Yujie Zheng, 2022. "1-line minimum rectilinear steiner trees and related problems," Journal of Combinatorial Optimization, Springer, vol. 44(4), pages 2832-2852, November.
    8. Jack Brimberg & Henrik Juel & Anita Schöbel, 2002. "Linear Facility Location in Three Dimensions---Models and Solution Methods," Operations Research, INFORMS, vol. 50(6), pages 1050-1057, December.
    9. Jack Brimberg & Robert Schieweck & Anita Schöbel, 2015. "Locating a median line with partial coverage distance," Journal of Global Optimization, Springer, vol. 62(2), pages 371-389, June.
    10. Diaz-Banez, J.M. & Ramos, P.A. & Sabariego, P., 2007. "The maximin line problem with regional demand," European Journal of Operational Research, Elsevier, vol. 181(1), pages 20-29, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:14:y:1980:i:1:p:1-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.