Author
Listed:
- Braden L. Crimmins
(Computer Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109)
- J. Alex Halderman
(Computer Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109)
- Bradley Sturt
(Information and Decision Sciences, University of Illinois Chicago, Chicago, Illinois 60607)
Abstract
For more than a century, election officials across the United States have inspected voting machines before elections using a procedure called logic and accuracy testing (LAT). This procedure consists of election officials casting a test deck of ballots into each voting machine and confirming the machine produces the expected vote total for each candidate. We bring a scientific perspective to LAT by introducing the first formal approach to designing test decks with rigorous security guarantees. Specifically, our approach employs robust optimization to find test decks that are guaranteed to detect any voting machine misconfiguration that would cause votes to be swapped across candidates. Of all the test decks with this security guarantee, our robust optimization problem yields the test deck with the minimum number of ballots, thereby minimizing implementation costs for election officials. To facilitate deployment at scale, we develop a practically efficient exact algorithm for solving our robust optimization problems based on the cutting plane method. In partnership with the Michigan Bureau of Elections, we retrospectively applied our approach to all 6,928 ballot styles from Michigan’s November 2022 general election; this retrospective study reveals that the test decks with rigorous security guarantees obtained by our approach require, on average, only 1.2% more ballots than current practice. Our approach has since been piloted in real-world elections by the Michigan Bureau of Elections as a low-cost way to improve election security and increase public trust in democratic institutions.
Suggested Citation
Braden L. Crimmins & J. Alex Halderman & Bradley Sturt, 2025.
"Improving the Security of United States Elections with Robust Optimization,"
Operations Research, INFORMS, vol. 73(1), pages 61-85, January.
Handle:
RePEc:inm:oropre:v:73:y:2025:i:1:p:61-85
DOI: 10.1287/opre.2023.0422
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:73:y:2025:i:1:p:61-85. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.