IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v72y2024i1p257-276.html
   My bibliography  Save this article

Estimating Large-Scale Tree Logit Models

Author

Listed:
  • Srikanth Jagabathula

    (Stern School of Business, New York University, New York, New York 10012)

  • Paat Rusmevichientong

    (Marshall School of Business, University of Southern California, Los Angeles, California 90089)

  • Ashwin Venkataraman

    (Naveen Jindal School of Management, University of Texas at Dallas, Richardson, Texas 75080)

  • Xinyi Zhao

    (Amazon Advertising, Palo Alto, California 94301)

Abstract

We describe an efficient estimation method for large-scale tree logit models, using a novel change-of-variables transformation that allows us to express the negative log-likelihood as a strictly convex function in the leaf node parameters and a difference of strictly convex functions in the nonleaf node parameters. Exploiting this representation, we design a fast iterative method that computes a sequence of parameter estimates using simple closed-form updates. Our algorithm relies only on first-order information (function and gradients values), but unlike other first-order methods, it does not require any step size tuning or costly projection steps. The sequence of parameter estimates yields increasing likelihood values, and we establish sublinear convergence to a stationary point of the maximum likelihood problem. Numerical results on both synthetic and real data show that our algorithm outperforms state-of-the-art optimization methods, especially for large-scale tree logit models with thousands of nodes.

Suggested Citation

  • Srikanth Jagabathula & Paat Rusmevichientong & Ashwin Venkataraman & Xinyi Zhao, 2024. "Estimating Large-Scale Tree Logit Models," Operations Research, INFORMS, vol. 72(1), pages 257-276, January.
  • Handle: RePEc:inm:oropre:v:72:y:2024:i:1:p:257-276
    DOI: 10.1287/opre.2023.2479
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.2023.2479
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2023.2479?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:72:y:2024:i:1:p:257-276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.