IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v71y2023i5p1530-1557.html
   My bibliography  Save this article

A Nonparametric Algorithm for Optimal Stopping Based on Robust Optimization

Author

Listed:
  • Bradley Sturt

    (Department of Information and Decision Sciences, University of Illinois Chicago, Chicago, Illinois 60607)

Abstract

Optimal stopping is a fundamental class of stochastic dynamic optimization problems with numerous applications in finance and operations management. We introduce a new approach for solving computationally-demanding stochastic optimal stopping problems with known probability distributions. The approach uses simulation to construct a robust optimization problem that approximates the stochastic optimal stopping problem to any arbitrary accuracy; we then solve the robust optimization problem to obtain near-optimal Markovian stopping rules for the stochastic optimal stopping problem. In this paper, we focus on designing algorithms for solving the robust optimization problems that approximate the stochastic optimal stopping problems. These robust optimization problems are challenging to solve because they require optimizing over the infinite-dimensional space of all Markovian stopping rules. We overcome this challenge by characterizing the structure of optimal Markovian stopping rules for the robust optimization problems. In particular, we show that optimal Markovian stopping rules for the robust optimization problems have a structure that is surprisingly simple and finite-dimensional. We leverage this structure to develop an exact reformulation of the robust optimization problem as a zero-one bilinear program over totally unimodular constraints. We show that the bilinear program can be solved in polynomial time in special cases, establish computational complexity results for general cases, and develop polynomial-time heuristics by relating the bilinear program to the maximal closure problem from graph theory. Numerical experiments demonstrate that our algorithms for solving the robust optimization problems are practical and can outperform state-of-the-art simulation-based algorithms in the context of widely-studied stochastic optimal stopping problems from high-dimensional option pricing.

Suggested Citation

  • Bradley Sturt, 2023. "A Nonparametric Algorithm for Optimal Stopping Based on Robust Optimization," Operations Research, INFORMS, vol. 71(5), pages 1530-1557, September.
  • Handle: RePEc:inm:oropre:v:71:y:2023:i:5:p:1530-1557
    DOI: 10.1287/opre.2023.2461
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.2023.2461
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2023.2461?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:71:y:2023:i:5:p:1530-1557. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.