IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v68y2020i6p1913-1931.html
   My bibliography  Save this article

On the Consistent Path Problem

Author

Listed:
  • Leonardo Lozano

    (Operations, Business Analytics & Information Systems, University of Cincinnati, Cincinnati, Ohio 45221)

  • David Bergman

    (Operations and Information Management, University of Connecticut, Storrs, Connecticut 06260)

  • J. Cole Smith

    (Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse, New York 13210)

Abstract

The application of decision diagrams in combinatorial optimization has proliferated in the last decade. In recent years, authors have begun to investigate how to use not one, but a set of diagrams, to model constraints and objective function terms. Optimizing over a collection of decision diagrams, the problem we refer to as the consistent path problem (CPP) can be addressed by associating a network-flow model with each decision diagram, jointly linked through channeling constraints. A direct application of integer programming to the ensuing model has already been shown to result in algorithms that provide orders-of-magnitude performance gains over classical methods. Lacking, however, is a careful study of dedicated solution methods designed to solve the CPP. This paper provides a detailed study of the CPP, including a discussion on complexity results and a complete polyhedral analysis. We propose a cut-generation algorithm, which, under a structured ordering property, finds a cut, if one exists, through an application of the classical maximum flow problem, albeit in an exponentially sized network. We use this procedure to fuel a cutting-plane algorithm that is applied to unconstrained binary cubic optimization and a variant of the market split problem, resulting in an algorithm that compares favorably with CPLEX, using standard integer programming formulations for both problems.

Suggested Citation

  • Leonardo Lozano & David Bergman & J. Cole Smith, 2020. "On the Consistent Path Problem," Operations Research, INFORMS, vol. 68(6), pages 1913-1931, November.
  • Handle: RePEc:inm:oropre:v:68:y:2020:i:6:p:1913-1931
    DOI: 10.1287/opre.2020.1979
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/opre.2020.1979
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2020.1979?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alfred Wassermann, 2002. "Attacking the Market Split Problem with Lattice Point Enumeration," Journal of Combinatorial Optimization, Springer, vol. 6(1), pages 5-16, March.
    2. Alberto Del Pia & Aida Khajavirad, 2017. "A Polyhedral Study of Binary Polynomial Programs," Mathematics of Operations Research, INFORMS, vol. 42(2), pages 389-410, May.
    3. Gary Kochenberger & Jin-Kao Hao & Fred Glover & Mark Lewis & Zhipeng Lü & Haibo Wang & Yang Wang, 2014. "The unconstrained binary quadratic programming problem: a survey," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 58-81, July.
    4. Yanjun Wang & Zhian Liang, 2010. "Global optimality conditions for cubic minimization problem with box or binary constraints," Journal of Global Optimization, Springer, vol. 47(4), pages 583-595, August.
    5. Gérard Cornuéjols & Milind Dawande, 1999. "A Class of Hard Small 0-1 Programs," INFORMS Journal on Computing, INFORMS, vol. 11(2), pages 205-210, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexey A. Bochkarev & J. Cole Smith, 2023. "On Aligning Non-Order-Associated Binary Decision Diagrams," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 910-928, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heiko Vogel, 2012. "Solving market split problems with heuristical lattice reduction," Annals of Operations Research, Springer, vol. 196(1), pages 581-590, July.
    2. David Bergman & Leonardo Lozano, 2021. "Decision Diagram Decomposition for Quadratically Constrained Binary Optimization," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 401-418, January.
    3. Byron Tasseff & Tameem Albash & Zachary Morrell & Marc Vuffray & Andrey Y. Lokhov & Sidhant Misra & Carleton Coffrin, 2024. "On the emerging potential of quantum annealing hardware for combinatorial optimization," Journal of Heuristics, Springer, vol. 30(5), pages 325-358, December.
    4. Oguz, Osman, 2010. "Cutting plane algorithms for 0-1 programming based on cardinality cuts," European Journal of Operational Research, Elsevier, vol. 205(2), pages 273-279, September.
    5. Singh, Nongmeikapam Brajabidhu & Roy, Arnab & Saha, Anish Kumar, 2024. "Max-flow min-cut theorem in quantum computing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 649(C).
    6. Xue-Gang Zhou & Xiao-Peng Yang & Bing-Yuan Cao, 2015. "Global optimality conditions for cubic minimization problems with cubic constraints," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(3), pages 243-264, December.
    7. Aufenanger, Tobias, 2018. "Treatment allocation for linear models," FAU Discussion Papers in Economics 14/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics, revised 2018.
    8. Michele Samorani & Yang Wang & Yang Wang & Zhipeng Lv & Fred Glover, 2019. "Clustering-driven evolutionary algorithms: an application of path relinking to the quadratic unconstrained binary optimization problem," Journal of Heuristics, Springer, vol. 25(4), pages 629-642, October.
    9. Karen Aardal & Arjen K. Lenstra, 2004. "Hard Equality Constrained Integer Knapsacks," Mathematics of Operations Research, INFORMS, vol. 29(3), pages 724-738, August.
    10. Bahram Alidaee & Haibo Wang, 2017. "A note on heuristic approach based on UBQP formulation of the maximum diversity problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(1), pages 102-110, January.
    11. Z. Y. Wu & J. Quan & G. Q. Li & J. Tian, 2012. "Necessary Optimality Conditions and New Optimization Methods for Cubic Polynomial Optimization Problems with Mixed Variables," Journal of Optimization Theory and Applications, Springer, vol. 153(2), pages 408-435, May.
    12. Fred Glover & Jin-Kao Hao, 2016. "f-Flip strategies for unconstrained binary quadratic programming," Annals of Operations Research, Springer, vol. 238(1), pages 651-657, March.
    13. Yang Wang & Jin-Kao Hao & Fred Glover & Zhipeng Lü & Qinghua Wu, 2016. "Solving the maximum vertex weight clique problem via binary quadratic programming," Journal of Combinatorial Optimization, Springer, vol. 32(2), pages 531-549, August.
    14. Wang, Haibo & Alidaee, Bahram, 2019. "Effective heuristic for large-scale unrelated parallel machines scheduling problems," Omega, Elsevier, vol. 83(C), pages 261-274.
    15. Kedong Yan & Hong Seo Ryoo, 2022. "Graph, clique and facet of boolean logical polytope," Journal of Global Optimization, Springer, vol. 82(4), pages 1015-1052, April.
    16. Aritra Sarkar & Zaid Al-Ars & Koen Bertels, 2021. "QuASeR: Quantum Accelerated de novo DNA sequence reconstruction," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-23, April.
    17. Fred Glover & Gary Kochenberger & Rick Hennig & Yu Du, 2022. "Quantum bridge analytics I: a tutorial on formulating and using QUBO models," Annals of Operations Research, Springer, vol. 314(1), pages 141-183, July.
    18. Martí, Rafael & Martínez-Gavara, Anna & Pérez-Peló, Sergio & Sánchez-Oro, Jesús, 2022. "A review on discrete diversity and dispersion maximization from an OR perspective," European Journal of Operational Research, Elsevier, vol. 299(3), pages 795-813.
    19. V. Jeyakumar & G. Li & S. Srisatkunarajah, 2014. "Global optimality principles for polynomial optimization over box or bivalent constraints by separable polynomial approximations," Journal of Global Optimization, Springer, vol. 58(1), pages 31-50, January.
    20. Juan S. Borrero & Colin Gillen & Oleg A. Prokopyev, 2017. "Fractional 0–1 programming: applications and algorithms," Journal of Global Optimization, Springer, vol. 69(1), pages 255-282, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:68:y:2020:i:6:p:1913-1931. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.