IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v68y2020i3p762-792.html
   My bibliography  Save this article

An Efficient Frontier Approach to Scoring and Ranking Hospital Performance

Author

Listed:
  • Daniel Adelman

    (Booth School of Business, The University of Chicago, Chicago, Illinois 60637)

Abstract

The Centers for Medicare and Medicaid Services (CMS) star rating methodology for publicly evaluating hospitals uses a latent variable model that is based on the presumption of a single, but unobservable, hospital-specific quality factor shared across a group of performance measures. Performance measures are given higher weight if they statistically appear to be more strongly correlated with this hidden factor. We show how this approach, when applied to measures that are weakly or not correlated with each other, can effectively ignore measures and can exhibit “knife-edge” instability, so that even if hospitals improve relative to all other hospitals, they may nonetheless score lower overall because of weight shifting onto different measures than before. In contrast, we provide an approach to scoring and ranking hospitals that, under reasonable conditions, ensures that hospitals that improve relative to all other hospitals obtain higher scores, while also having the capability to autonomously adjust weights as measures are added or subtracted over time. Rather than exploit statistical correlation, we propose a conic optimization framework that offers a new integrated approach in data envelopment analysis for simultaneous efficiency analysis and performance evaluation. We develop theory that explains the behaviour of our approach, including various properties satisfied by hospital scores at optimality. Using data, we apply our approach to score and rank nearly every hospital in the United States and demonstrate the extent to which it agrees or disagrees with the existing approach to the CMS star ratings.

Suggested Citation

  • Daniel Adelman, 2020. "An Efficient Frontier Approach to Scoring and Ranking Hospital Performance," Operations Research, INFORMS, vol. 68(3), pages 762-792, May.
  • Handle: RePEc:inm:oropre:v:68:y:2020:i:3:p:762-792
    DOI: 10.1287/opre.2019.1972
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/opre.2019.1972
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2019.1972?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. R. Allen & A. Athanassopoulos & R.G. Dyson & E. Thanassoulis, 1997. "Weights restrictions and value judgements in Data Envelopment Analysis: Evolution, development and future directions," Annals of Operations Research, Springer, vol. 73(0), pages 13-34, October.
    2. Léopold Simar & Paul W. Wilson, 1998. "Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models," Management Science, INFORMS, vol. 44(1), pages 49-61, January.
    3. Adler, Nicole & Friedman, Lea & Sinuany-Stern, Zilla, 2002. "Review of ranking methods in the data envelopment analysis context," European Journal of Operational Research, Elsevier, vol. 140(2), pages 249-265, July.
    4. M C A Silva Portela & E Thanassoulis & G Simpson, 2004. "Negative data in DEA: a directional distance approach applied to bank branches," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(10), pages 1111-1121, October.
    5. Yasar A. Ozcan, 2008. "Health Care Benchmarking and Performance Evaluation," International Series in Operations Research and Management Science, Springer, number 978-0-387-75448-2, December.
    6. Chambers, Robert G. & Chung, Yangho & Fare, Rolf, 1996. "Benefit and Distance Functions," Journal of Economic Theory, Elsevier, vol. 70(2), pages 407-419, August.
    7. William W. Cooper & Lawrence M. Seiford & Kaoru Tone, 2007. "Data Envelopment Analysis," Springer Books, Springer, edition 0, number 978-0-387-45283-8, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikola Kadoić & Diana Šimić & Jasna Mesarić & Nina Begičević Ređep, 2021. "Measuring Quality of Public Hospitals in Croatia Using a Multi-Criteria Approach," IJERPH, MDPI, vol. 18(19), pages 1-28, September.
    2. Dinesh R. Pai & Fatma Pakdil & Nasibeh Azadeh-Fard, 2024. "Applications of data envelopment analysis in acute care hospitals: a systematic literature review, 1984–2022," Health Care Management Science, Springer, vol. 27(2), pages 284-312, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rafael Benítez & Vicente Coll-Serrano & Vicente J. Bolós, 2021. "deaR-Shiny: An Interactive Web App for Data Envelopment Analysis," Sustainability, MDPI, vol. 13(12), pages 1-19, June.
    2. Gómez-Calvet, Roberto & Conesa, David & Gómez-Calvet, Ana Rosa & Tortosa-Ausina, Emili, 2014. "Energy efficiency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures?," Applied Energy, Elsevier, vol. 132(C), pages 137-154.
    3. Diogo Cunha Ferreira & Rui Cunha Marques, 2020. "A step forward on order-α robust nonparametric method: inclusion of weight restrictions, convexity and non-variable returns to scale," Operational Research, Springer, vol. 20(2), pages 1011-1046, June.
    4. Martin Bod’a & Martin Dlouhý & Emília Zimková, 2018. "Unobservable or omitted production variables in data envelopment analysis through unit-specific production trade-offs," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(4), pages 813-846, December.
    5. Svetlana Ratner & Andrey Lychev & Aleksei Rozhnov & Igor Lobanov, 2021. "Efficiency Evaluation of Regional Environmental Management Systems in Russia Using Data Envelopment Analysis," Mathematics, MDPI, vol. 9(18), pages 1-21, September.
    6. Cláudia Araújo & Carlos Barros & Peter Wanke, 2014. "Efficiency determinants and capacity issues in Brazilian for-profit hospitals," Health Care Management Science, Springer, vol. 17(2), pages 126-138, June.
    7. Juan Aparicio & Magdalena Kapelko, 2019. "Enhancing the Measurement of Composite Indicators of Corporate Social Performance," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 144(2), pages 807-826, July.
    8. Emrouznejad, Ali & De Witte, Kristof, 2010. "COOPER-framework: A unified process for non-parametric projects," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1573-1586, December.
    9. Manh D. Pham & Valentin Zelenyuk, 2018. "Slack-based directional distance function in the presence of bad outputs: theory and application to Vietnamese banking," Empirical Economics, Springer, vol. 54(1), pages 153-187, February.
    10. Thyago Celso Cavalcante Nepomuceno & Katarina Tatiana Marques Santiago & Cinzia Daraio & Ana Paula Cabral Seixas Costa, 2022. "Exogenous crimes and the assessment of public safety efficiency and effectiveness," Annals of Operations Research, Springer, vol. 316(2), pages 1349-1382, September.
    11. Diogo Ferreira & Rui Cunha Marques, 2018. "Identifying congestion levels, sources and determinants on intensive care units: the Portuguese case," Health Care Management Science, Springer, vol. 21(3), pages 348-375, September.
    12. Picazo-Tadeo, Andrés J. & Beltrán-Esteve, Mercedes & Gómez-Limón, José A., 2012. "Assessing eco-efficiency with directional distance functions," European Journal of Operational Research, Elsevier, vol. 220(3), pages 798-809.
    13. Falavigna, G. & Ippoliti, R., 2020. "The socio-economic planning of a community nurses programme in mountain areas: A Directional Distance Function approach," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    14. Castro Lobo, M.S. & Estellita Lins, M.P. & Menegolla, I.A., 2014. "A new approach to assess the performance of the Brazilian National Immunization Program (NIP)," Socio-Economic Planning Sciences, Elsevier, vol. 48(1), pages 49-56.
    15. Ruiyue Lin & Zhiping Chen, 2017. "A directional distance based super-efficiency DEA model handling negative data," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(11), pages 1312-1322, November.
    16. Lee, Seonghee & Lee, Hakyeon, 2015. "Measuring and comparing the R&D performance of government research institutes: A bottom-up data envelopment analysis approach," Journal of Informetrics, Elsevier, vol. 9(4), pages 942-953.
    17. Cheng, Gang & Zervopoulos, Panagiotis & Qian, Zhenhua, 2013. "A variant of radial measure capable of dealing with negative inputs and outputs in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 225(1), pages 100-105.
    18. Ramón, Nuria & Ruiz, José L. & Sirvent, Inmaculada, 2010. "On the choice of weights profiles in cross-efficiency evaluations," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1564-1572, December.
    19. Valentin Zelenyuk, 2019. "Data Envelopment Analysis and Business Analytics: The Big Data Challenges and Some Solutions," CEPA Working Papers Series WP072019, School of Economics, University of Queensland, Australia.
    20. Sinuany-Stern, Zilla, 2023. "Foundations of operations research: From linear programming to data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1069-1080.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:68:y:2020:i:3:p:762-792. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.